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Abstract
Polynomial Networks (PNs) have demonstrated
promising performance on face and image recog-
nition recently. However, robustness of PNs is un-
clear and thus obtaining certificates becomes im-
perative for enabling their adoption in real-world
applications. Existing verification algorithms on
ReLU neural networks (NNs) based on branch
and bound (BaB) techniques cannot be trivially
applied to PN verification. In this work, we devise
a new bounding method, equipped with BaB for
global convergence guarantees, called VPN. One
key insight is that we obtain much tighter bounds
than the interval bound propagation baseline. This
enables sound and complete PN verification with
empirical validation on MNIST, CIFAR10 and
STL10 datasets. We believe our method has its
own interest to NN verification.

1. Introduction
Polynomial Networks (PNs) have demonstrated promising
performance across image recognition and genera-
tion (Chrysos et al., 2021b; Chrysos & Panagakis, 2020) be-
ing state-of-the-art on large-scale face recognition†.Unlike
the conventional Neural Networks (NNs), where non-
linearitiy is introduced with the use of activation functions
(LeCun et al., 2015), PNs learn non-linear mappings without
the need of activation functions by exploiting multiplicative
interactions (Hadamard products). Recent works have un-
covered interesting properties of PNs, like their larger model
expressivity (Fan et al., 2021) or their spectral bias (Choraria
et al., 2022). However, one critical issue before considering
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PNs for real-world applications is their robustness.

Neural networks are prone to small (often imperceptible
to the human eye), but malicious perturbations in the in-
put data points (Szegedy et al., 2014; Goodfellow et al.,
2015). Those perturbations can have a detrimental effect
on image recognition systems, e.g., as illustrated in face
recognition (Goswami et al., 2019; Zhong & Deng, 2019;
Dong et al., 2019; Li et al., 2020). Guarding against such
attacks has so far proven futile (Shafahi et al., 2019; Dou
et al., 2018).Instead, a flurry of research has been published
on certifying robustness of NNs against this performance
degradation (Katz et al., 2017; Ehlers, 2017; Tjeng et al.,
2019; Bunel et al., 2020a; Wang et al., 2021; Ferrari et al.,
2022). However, most of the verification algorithms for NNs
are developed for the ReLU activation function by exploit-
ing its piecewise linearity property and might not trivially
extend to other nonlinear activation functions (Wang et al.,
2021). Indeed, Zhu et al. (2022) illustrate that guarding
PNs against adversarial attacks is challenging. Therefore,
we pose the following question: Can we obtain certifiable
performance for PNs against adversarial attacks?

In this work, we answer affirmatively and provide a
method for the verification of PNs. Concretely, we take
advantage of the twice-differentiable nature of PNs to
build a lower bounding method based on α-convexification
(Adjiman & Floudas, 1996), which is integrated into a
Branch and Bound algorithm (Land & Doig, 1960) to
guarantee completeness of our verification method. In
order to use α-convexification a lower bound α of the
minimum eigenvalue of the Hessian matrix over the
possible perturbation set is needed. We use interval bound
propagation together with the theoretical properties of the
lower bounding Hessian matrix (Adjiman et al., 1998), in
order to develop an algorithm to efficiently compute α.

Our contributions can be summarized as follows: (i) We
propose the first algorithm for the verification of PNs. (ii)
We thoroughly analyze the performance of our method by
comparing it with a black-box solver and an interval bound
propagation (IBP) BaB algorithm. (iii) We empirically
show that using α-convexitication for lower bounding pro-
vides tighter bounds than IBP for PN verification.
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The proposed approach can practically verify PNs and that
could theoretically be applied for sound and complete veri-
fication of any twice-differentiable network.

Notation: We use the shorthand [n] := {1, 2, . . . , n} for a
positive integer n. We use bold capital (lowercase) letters,
e.g., X (x) for representing matrices (vectors). The jth

column of a matrix X is given by x:j . The element in the
ith row and jth column is given by xij , similarly, the ith

element of a vector x is given by xi. The element-wise
(Hadamard) product, symbolized with ∗, of two matrices (or
vectors) in Rd1×d2 (or Rd) gives another matrix (or vector)
in Rd1×d2 (or Rd). The ℓ∞ norm of a vector x ∈ Rd is
given by: ||x||∞ = maxi∈[d] |xi|. Lastly, the operators L
and U give the lower and upper bounds of a scalar, vector
or matrix function by IBP, see Section 3.1.

2. Background
To make the paper self-contained, we introduce the PN
architecture in Section 2.1 and the Robustness Verification
problem in Section 2.2.

2.1. Polynomial Networks (PNs)

Polynomial Networks (PNs) are inspired by the fact that
any smooth function can be approximated via a polynomial
expansion (Stone, 1948). However, the number of param-
eters increases exponentially with the polynomial degree,
which makes it intractable to use high degree polynomials
for high-dimensional data problems such as image classifica-
tion where the input can be in the order of 105 (Deng et al.,
2009). Chrysos et al. (2021b) introduce a joint factorization
of polynomial coefficients in a low-rank manner, reducing
the number of parameters to linear with the polynomial de-
gree and allowing the expression as a Neural Network. We
briefly recap one fundamental factorization below.

Let N be the polynomial degree, z ∈ Rd be the input vector,
d, k and o be the input, hidden and output sizes, respectively.
The recursive equation of PNs can be expressed as:

x(n) = (W⊤
[n]z) ∗ x

(n−1) + x(n−1) ,∀ n ∈ [N ] , (1)

where x(1) = W⊤
[1]z, f(z) = Cx(N) + β and ∗ denotes

the Hadamard product. W[n] ∈ Rd×k and C ∈ Ro×k are
weight matrices, β ∈ Ro is a bias vector. A graphical repre-
sentation of a third degree PN architecture corresponding
to Eq. (1) can be found in Fig. 3. Further details on the
factorization (as well as other factorizations) are deferred to
the Appendix B.1 (Appendix B.2).

2.2. Robustness Verification

Robustness Verification (Bastani et al., 2016; Liu et al.,
2021) consists of verifying that a property regarding the

input and output of a NN is satisfied, e.g. checking whether
or not a small perturbation in the input will produce a change
in the network output that makes it classify the input into
another class. Let f : [0, 1]

d → Ro be a function, e.g., a
NN or a PN, that classifies inputs z into a class c, such that
c = argmaxf(z). We want to verify that for any input
satisfying a set of constraints Cin, the output of the network
will satisfy a set of output constraints Cout. That is, we want
to check the following logical formula is satisfied:

z ∈ Cin =⇒ f(x) ∈ Cout. (2)

In this work we focus on adversarial robustness (Szegedy
et al., 2014; Carlini & Wagner, 2017) in classification. As-
sume an observation z0 is given and let t = argmaxf(z0)
be the correct class, we want to check whether every input
in a neighbourhood of z0, is classified as t. We focus on
adversarial attacks restricted to neighbourhoods defined in
terms of ℓ∞ norm, which is a popular norm-bounded attack
in the verification community. Then, the constraint sets
become:

Cin = {z : ||z − z0||∞ ≤ ϵ, zi ∈ [0, 1],∀i ∈ [d]}
= {z : max{0, z0i − ϵ} ≤ zi

≤ min{1, z0i + ϵ},∀i ∈ [d]}
Cout = {y : yt > yj ,∀j ̸= t}.

(3)

This can be reformulated as a mathematical optimiza-
tion problem. For every adversarial class γ ̸= t =
argmaxf(z0), we can solve:

min
z

g(z) = f(z)t − f(z)γ s.t. z ∈ Cin . (4)

If the solution z∗ with v∗ = f(z∗)t − f(z∗)γ ≤ f(z)t −
f(z)γ ,∀z ∈ Cin satisfies v∗ > 0 then robustness is verified
for the adversarial class γ.

3. Method
Our method, called VPN, can be categorized in the the
Branch and Bound (BaB) framework (Land & Doig, 1960),
a well known approach to global optimization (Horst &
Tuy, 1996) and NN verification (Bunel et al., 2020a). This
kind of algorithms guarantee finding a global minima of
the problem in Eq. (4) by recursively splitting the original
feasible set into disjoint sets (branching) where upper and
lower bounds of the global minima are computed (bound-
ing). This mechanism can be used to discard subsets where
the global minima cannot be achieved (its lower bound is
greater than the upper bound of another subset).

Our method is based on an α-BaB algorithm (Adjiman et al.,
1998), which is characterized for using α-convexification
(Adjiman & Floudas, 1996) for computing a lower bound
of the global minima of each subset. To be specific, α-
convexification aims to obtain a convex lower bounding
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Figure 1: Overview of our branch and bound verification algorithm. Given a trained PN f , an input set Cin, the true class t
and an adversarial class γ, we check if an adversarial example exists (Falsified) or not (Verified). Note that the branching of
a subset C provides two disjoint subsets C1 and C2. Also note that when L > 0, no subset is added to subsets.

function of any twice-differentiable function g : Rd → R
such that

gα(z;α, l,u) = g(z) + α

d∑
i=1

(zi − li)(zi − ui) , (5)

as its α-convexified version. Let Hg(z) = ∇2
zzg(z) be the

Hessian matrix of f , gα is convex in z ∈ [l,u] for α ≥
max{0,− 1

2 min{λmin(Hg(z)) : z ∈ [l,u]}}. Moreover, it
holds that gα(z;α, l,u) ≤ g(z),∀z ∈ [l,u].

To make PN verification feasible, we need to study IBP for
PNs and design an efficient estimate on the α parameter,
which are our main technical contributions in the algorith-
mic aspect. In our case, every feasible set, starting with the
input set Cin (Eq. (3)), is split by taking the widest variable
interval and dividing it in two by the middle point. Then,
the upper bound of each subproblem is given by applying
standard Projected Gradient Descent (PGD) (Kelley, 1999)
over the original objective function. This is a common ap-
proach to find adversarial examples (Madry et al., 2018),
but as the objective is non-convex, it is not sufficient for
sound and complete verification. The lower bound is given
by applying PGD over the α-convexified objective gα, as it
is convex, PGD converges to the global minima and a lower
bound of the original objective. The α parameter is com-
puted only once per verification problem. Further details on
the algorithm and the proof of convergence of Eq. (4) exist
in Appendix C. See Fig. 1 for an overview of our method.

In the sequel, we detail our method to compute a lower
bound on the minimum eigenvalue of the Hessian matrix
into three main components: interval propagation, lower
bounding Hessians, and fast estimation on such lower bound-
ing via power method.

3.1. Interval Bound Propagation through a PN

Interval bound propagation (IBP) is a key ingredient of
our verification algorithm. Suppose we have an input
set defined by an ℓ∞-norm ball like in Eq. (3). This
set can be represented as a vector of intervals z̃ =
([l1, u1]

⊤, [l2, u2]
⊤, · · · , [ld, ud]

⊤) = [l,u] ∈ Rd×2, where
[li, ui] are the lower and upper bound for the ith coordinate.
Let L and U be the lower and upper bound IBP operators.
Given this input set, we would like to obtain bounds on
the output of the network (f(z)i), the gradient (∇zf(z)i),
and the Hessian (∇2

zzf(z)i) for any z ∈ z̃. The opera-
tors L(g(z)) and U(g(z)) of any function g : Rd → R
satisfy L(g(z)) ≤ g(z) ≤ U(g(z)),∀z ∈ [l,u]. We will
define these upper and lower bound operators in terms of
the operations present in a PN.

Using interval propagation (Moore et al., 2009), we can
define:

Identity
{
L(zi) = li, U(zi) = ui

linear mapping



L(
∑
i

wihi(z)) =
∑
i

w+
i L(hi(z))

+ w−
i U(hi(z))

U(
∑
i

wihi(z)) =
∑
i

w−
i L(hi(z))

+ w+
i U(hi(z))

multiplication


S =


L(h1(z))L(h2(z)),

L(h1(z))U(h2(z)),

U(h1(z))L(h2(z)),

U(h1(z))U(h2(z))

, |S| = 4

L(h1(z)h2(z)) = minS ,

U(h1(z)h2(z)) = maxS ,
(6)

where w+
i = max{0, wi} and w−

i = min{0, wi}, hi(z) is
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any real-valued function of z and | · | is the set cardinality.

With these basic operations one can define bounds on any
intermediate output, gradient or Hessian of a PN, for more
details, we refer to Appendix B. which only consists on a
linear mapping and a multiplication of intervals. We extend
the upper and lower bound (L(·) and U(·)) operators to also
work on vectors and matrices by applying them at every
position of the vector or matrix. One can directly use IBP to
obtain bounds on the verification objective from Eq. (4) with
a single forward pass of the bounds through the network
and obtaining L(g(z)) = L(f(z)t) − U(f(z)γ). IBP is a
common practice in NN verification to obtain fast bounds
(Wang et al., 2018a).

3.2. Lower bound of the minimum eigenvalue of the
Hessian matrix

Here we describe our method to compute a lower bound
on the minimum eigenvalue of the Hessian matrix in the
feasible set. Before deriving the lower bound, we need the
first and second order partial derivatives of PNs.

Let g(z) = f(z)t − f(z)a be the objective function for
t = argmaxf(z0) and any a ̸= t. In order to compute the
parameter α for performing α-convexification, we need to
know the structure of our objective function. In this section
we compute the first and second order partial derivatives of
the PN. The gradient and Hessian matrices of the objective
function (see Eq. (4)) are easily found to be:

∇zg(z) =

k∑
i=1

(cti − cγi)∇zx
(N)
i

Hg(z) =

k∑
i=1

(cti − cγi)∇2
zzx

(N)
i ,

(7)

we now define the gradients ∇zx
(n)
i and Hessians ∇2

zzx
(n)
i

of Eq. (1) in a recursive way:

∇zx
(n)
i = w[n]:i ·x

(n−1)
i +(w⊤

[n]:iz+1) · ∇zx
(n−1)
i (8)

∇2
zzx

(n)
i = ∇zx

(n−1)
i w⊤

[n]:i + {∇zx
(n−1)
i w⊤

[n]:i}
⊤

+ (w⊤
[n]:iz + 1)∇2

zzx
(n−1)
i ,

(9)

with ∇zx
(1)
i = w[1]:i and ∇2

zzx
(1)
i = 0d×d, being 0d×d a

d× d matrix with 0 in every position.

We are ready to compute a lower bound on the mini-
mum eigenvalue of the Hessian matrix in the feasible set.
Firstly, for any z ∈ [l,u] and any polynomial degree
N , we can express the set of possible Hessians H =
{Hg(z) : z ∈ [l,u]} as an interval matrix. An interval
matrix is a matrix [M ] ∈ Rd×d×2 where every position

[m]ij = [L(mij),U(mij)] is an interval. Therefore, if
Hg(z) is bounded for z ∈ [l,u], then we can represent
H = {Hg(z) : Hg(z) ∈ [M ]} = {Hg(z) : L(mij) ≤
Hg(z)ij ≤ U(mij),∀i, j ∈ [d]}.

For every set of Hessians, we can define the lower bounding
Hessian LH . Described in Adjiman et al. (1998), This
matrix satisfies that λmin(LH) ≤ λmin(Hg(z)),∀Hg(z) ∈
H, z ∈ [l,u]. Let L(M) and U(M), the lower bounding
Hessian is defined as follows:

LH =
L(M) + U(M)

2
+ diag

(
L(M)1− U(A)1

2

)
,

(10)
where 1 is a vector of ones and diag(v) is a diagonal matrix
with the vector v in the diagonal.

Then, we can obtain the spectral radius ρ(LH) with a
power method. As the spectral radius satisfies ρ(LH) ≥
|λi(LH)|,∀i ∈ [d], the following inequality holds:

−ρ(LH) ≤ λmin(LH) ≤ λmin(Hg(z)),

∀Hg(z) ∈ H, z ∈ [l,u] ,
(11)

allowing us to use:
α = ρ(LH)

2 ≥ max{0,− 1
2 min{λmin(Hf (z)) : z ∈

[l,u]}}.

3.3. Efficient power method for spectral radius
computation of the lower bounding Hessian

By using interval propagation, one can easily compute sound
lower and upper bounds on each position of the Hessian ma-
trix, compute the lower bounding Hessian and perform a
power method with it to obtain the spectral radius ρ. How-
ever, this method would not scale well to high dimensional
scenarios. For instance, in the STL10 case, with 96 × 96
RGB images (d = 96 · 96 · 3 = 27, 648) our Hessian matrix
would require in the order of O(d2) = O(109) real numbers
to be stored. This makes it intractable to perform a power
method over such an humongous matrix, or even to compute
the lower bounding Hessian. Alternatively, we take advan-
tage of the low rank decomposition characterizing PNs to
efficiently perform a power method over the lower bounding
Hessian.

Standard power method for spectral radius computation
Given any squared and real valued matrix M ∈ Rd×d

and an initial vector v0 ∈ Rd that is not an eigenvector of
M , the sequence: vn = M(Mvn−1)

||M(Mvn−1)||2 , converges to the
eigenvector with the largest eigenvalue in absolute value,
i.e. the eigenvector where the spectral norm is attained,
being the spectral norm ρ(M) = ||M(Mvn−1)||2 (Mises
& Pollaczek-Geiringer, 1929).

Power method over lower bounding Hessian of PNs

We can employ IBP (Section 3.1) in order to obtain an ex-
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pression of the lower bounding Hessian (LH ) and evaluate
each step of the power method as:

LHv =
U(Hg(z))v + L(Hg(z))v

2

+

(
L(Hg(z))1− U(Hg(z))1

2

)
∗ v .

(12)

Applying IBP on Eq. (7) we obtain:

L(Hg(z))v =

k∑
i=1

(cti − cγi)
+ L(∇2

zzx
(N)
i )v

+

k∑
i=1

(cti − cγi)
− U(∇2

zzx
(N)
i )v

U(Hg(z))v =

k∑
i=1

(cti − cγi)
− L(∇2

zzx
(N)
i )v

+

k∑
i=1

(cti − cγi)
+ U(∇2

zzx
(N)
i )v .

(13)

We can recursively evaluate L(∇2
zzx

(n)
i )v and

U(∇2
zzx

(n)
i )v efficiently as these matrices can be ex-

pressed as a sum of rank-1 matrices, check Proposition 1 in
the appendix.

Lastly, by applying recursively Proposition 1 from n = N
to n = 1, starting with δ = 1, we can substitute the results
on Eq. (13) and then on Eq. (12) to efficiently evaluate a
step of the power method without needing to store the lower
bounding Hessian matrix or needing to perform expensive
matrix-vector products.

Overall, our lower bounding method consists in computing a
valid value of α that satisfies that the α-convexified objective
gα is convex, following Eqs. (4) and (5). In particular, we
use α = ρ(LH)

2 . ρ(LH) is computed via a power method,
where the main operation LHv is evaluated without the
need to compute or store the LH matrix. Provided this
valid α, we perform PGD over gα and this provides a lower
bound of the global minima of Eq. (4).

4. Experiments
In this section we show the efficiency of our method by
comparing against a simple Black-box solver. Tightness of
bounds is also analyzed in comparison with IBP. Finally, a
study of the performance of our method in different scenar-
ios is performed. Unless otherwise specified, every network
is trained for 100 epochs with Stochastic Gradiend Descent
(SGD), with a learning rate of 0.001, which is divided by 10
at epochs [40, 60, 80], momentum 0.9, weight decay 5·10−5

and batch size 128. We thoroughly evaluate our method over
the popular image classification datasets MNIST (LeCun

et al., 1998), CIFAR10 (Krizhevsky et al., 2014) and STL10
(Coates et al., 2011). Every experiment is done over the
first 1000 images of the test dataset, this is a common prac-
tice in verification (Singh et al., 2019). For images that are
correctly classified by the network, we sequentially verify
robustness against the remaining classes in decreasing order
of network output. Each verification problem is given a
maximum execution time of 60 seconds, we include experi-
ments with different time limits in Appendix E. Note that
the execution time can be longer as execution is cut in an
asynchronous way, i.e., after we finish the iteration of the
BaB algorithm where the time limit is reached. All of our
experiments were conducted on a single-GPU machine.

4.1. Comparison with Black-box solver

In this experiment, we compare the performance of our BaB
verification algorithm with the Black-box solver Gurobi
(Gurobi Optimization, LLC, 2022). Gurobi can glob-
ally solve Quadratically Constrained Quadratic Programs
whether they are convex or not. As this solver cannot ex-
tend to higher degree polynomial functions, we train 2nd

degree PNs with hidden size k = 16 to compare the ver-
ification time of our method with Gurobi. In order to do
so, we express the verification objective as a quadratic form
g(z) = f(z)t − f(z)a = z⊤Qz + q⊤z + c this together
with the input constraints z ∈ [l,u] is fed to Gurobi and
optimized until convergence.

The black-box solver approach neither scales to higher di-
mensional inputs nor to higher polynomial degrees. With
this approach we need O(d2) memory to store the quadratic
form, which makes it unfeasible for datasets with higher
resolution images than CIFAR10. On the contrary, as seen
in Table 1, our approach does not need so much memory
and can scale to datasets with larger input sizes like STL10.

4.2. Comparison with IBP

In this experiment we compare the tightness of the lower
bounds provided by IBP and α-convexification and their
effectiveness when employed for verification. This is done
by executing one upper bounding step with PGD and one
lower bounding step for IBP and α-convexification methods
over the initial feasible set provided by ϵ (see Eq. (3)). We
compare the average of the distance from each lower bound
to the PGD upper bound over the first 1000 images of the
MNIST dataset for PNs with hidden size k = 25 and degrees
ranging from 2 to 7. We also evaluate verified accuracy of
4th degree PNs (PN_Conv4) with both bounding methods
and a maximum time of 120 seconds, for details on the
architecture of these networks, we refer to Appendix E.
When using IBP, we get a much looser lower bound than
with α-convexification, see Fig. 2. Only for high-degree,
high-ϵ combinations IBP lower bounds are closer to the
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Figure 2: Average difference in log-scale between PGD upper bound (U ) and lower bound (L) provided by α-convexification
(blue) and IBP (red) of the first 1000 images of the MNIST dataset. α-convexification bounds are significantly tighter than
IBP for small ϵ values and all PN degrees from 2 to 7.

Table 1: Verification results for 2× 16 PNs. Columns F, T and t.o. refer to the number of images where robustness is
falsified, verified and timed-out respectively. When comparing with a black-box solver, our method is much faster and can
scale to higher dimensional inputs. This is due to our efficient exploitation of the low-rank factorization of PNs.

Dataset Correct ϵ
VPN (Our method) Gurobi

time F T t.o. time F T t.o.
MNIST 961 0.00725 1.76 37 924 0 16.6 37 924 0

(1× 28× 28) 0.013 1.78 71 890 0 15.13 71 890 0
0.05 1.43 682 267 12 6.25 691 270 0
0.06 1.5 790 155 16 4.47 799 162 0

CIFAR10 460 1/610 1.03 90 370 0 328.0 90 370 0
(3× 32× 32) 1/255 1.0 183 277 0 250.07 183 277 0

4/255 0.92 427 28 5 87.93 429 31 0
STL10 362 1/610 5.06 142 220 0

out of memory(3× 96× 96) 1/255 3.61 246 113 3
4/255 1.39 360 1 1

Table 2: Verification results for PN_Conv4 PNs, see Ta-
ble 3. We compare our method employing IBP and α-
convexification for lower bounding the objective. Columns
F, T and t.o. refer to the number of images where robust-
ness is falsified, verified and timed-out respectively. When
using α-convexification bounds we get a low number of
timed-out instances, while when using IBP the number of
verified instances is 0 for every network-ϵ pair, which makes
it unsuitable for PN verification.

IBP VPN

Dataset ϵ
(α-convexification)

Time(s) F T t.o. Time(s) F T t.o.

MNIST 0.015 0.3 22 0 964 50 22 963 1
0.026 0.4 38 0 948 69 38 929 19

CIFAR10 1/255 0.4 158 0 468 274.6 159 455 12
2/255 0.5 321 0 305 224.1 321 165 140

STL10∗ 1/255 3.4 79 0 114 2481.0 79 112 2
∗Note: Results obtained in the first 500 images of the dataset due to the longer
running times because of the larger input size of STL10.

PGD upper bound. In practice, this is not a problem for
verification, as for epsilons in the order of 0.1, it is really
easy to find adversarial examples with PGD and there will
be no accuracy left to verify.

The looseness of the IBP lower bound is confirmed when
comparing the number of verified images with IBP and α-
convexification, see Table 2. With the latter, we are able to
verify the accuracy of 4th degree PNs almost exactly (almost
no timed-out instances) in every studied dataset, while with
the former, we are not able to verify robustness for a single
image in any network-ϵ pair, confirming the fact that IBP
cannot be used for PN verification.

5. Conclusion
We propose a method to verify polynomial networks (PNs).
Our method, which can be categorized as a α-BaB global
optimization algorithm, is a novel approach to verification
of PNs. We believe can be extended to cover other twice-
differentiable networks in the future. We exhibit that our
method outperforms existing methods, such as black-box
solvers and IBP. Our method enables verification in datasets
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such as STL10, which includes RGB images of 96 × 96
resolution. This is larger than the images typically used
in previous verification methods. Our method can further
encourage the community to extend verification to a broader
class of functions as well as conduct experiments in datasets
of higher resolution. Our IBP bounding method is related
to NN IBP methods and could be possibly extended to sym-
bolic interval propagation (Wang et al., 2018a; Henriksen &
Lomuscio, 2020; 2021).
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Contents of the appendix
We include additional experiments and ablation studies in Appendix E. Appendix B provides a more detailed coverage of PN
architectures. In Appendix C, we include the pseudocode of our algorithms and we provide an analysis of the complexity.
To conclude, in Appendix D, we include all of our proofs.

A. Related Work
In this section, we give an overview of neural network verification and polynomial networks, that are centered around our
target in this work.

A.1. Neural Network Verification

Early works on sound and complete NN verification were based on Mixed Integer Linear Programming (MILP) and
Satisfiability Modulo Theory (SMT) solvers (Katz et al., 2017; Ehlers, 2017; Bastani et al., 2016; Tjeng et al., 2019) and
were limited to both small datasets and networks.

The utilization of custom BaB algorithms enabled verification to scale to datasets and networks that are closer to those used
in practice. Bunel et al. (2020a) review earlier methods like Katz et al. (2017) and show they can be formulated as BaB
algorithms. BaDNB (Palma et al., 2021) proposes a novel branching strategy called Filtered Smart Branching and uses the
Lagrangian decomposition-based bounding algorithm proposed in Bunel et al. (2020b). β-CROWN (Wang et al., 2021)
proposes a bound propagation based algorithm. MN-BaB (Ferrari et al., 2022) proposes a cost adjusted branching strategy
and leverages multi-neuron relaxations and a GPU-based solver for bounds computing. Our work centers on the bounding
algorithm by proposing a general convex lowerbound adapted to PNs.

BaB algorithms for ReLU networks focus their branching strategies on the activity of ReLU neurons. This has been observed
to work better than input set branching for ReLU networks (Bunel et al., 2020a). Similarly to our method, Anderson et al.
(2019), Wang et al. (2018a), Royo et al. (2019) use input set branching strategies.

A.2. Polynomial Networks

First works have been focused on developing the foundations and showcasing the performance of PNs in different tasks
(Chrysos et al., 2021b; Chrysos & Panagakis, 2020). Also, in Chrysos et al. (2021a), PN classifiers are formulated in a
common framework where other previous methods like Wang et al. (2018b) can be framed. Lately, more emphasis has been
put onto proving theoretical properties of PNs (Fan et al., 2021; Choraria et al., 2022). In Zhu et al. (2022), they derive
Lipschitz constant and complexity bounds for two PN decompositions in terms of the l∞ and l2 norms. They also analyze
robustness of PNs against PGD adversarial attacks by measuring percentage of images where PGD fails to find an adversarial
example, which is a complete but not sound verification method. Our verification method is sound and complete.

B. Background
B.1. Coupled CP decomposition (CCP)

Relying on the CP decomposition (Kolda & Bader, 2009), the CCP decomposition provides us a core expression of PNs as
used in Chrysos & Panagakis (2020) to construct a generative model. Let N be the polynomial degree, z ∈ Rd the input
vector, d, k and o the input, hidden and output sizes, the CCP decomposition can be expressed as:

x(n) = (W⊤
[n]z) ∗ x

(n−1) + x(n−1) ,∀n = 2, 3, . . . , N , (14)

where x(1) = W⊤
[1]z, f(z) = Cx(N) + β and ∗ denotes the Hadamard product.

For example, the second order CCP factorization will lead to the following formulation:

x(1) = W⊤
[1]z, x(2) = W⊤

[2]z ∗ x(1) + x(1), f(z) = Cx(2) + β , (15)

where W[1] ∈ Rd×k, W[2] ∈ Rd×k and C ∈ Ro×k are weight matrices, β ∈ Ro is a vector.
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z W[1] ∗ +

W[2]

∗ +

W[3]

C +

β

f(z)
x(1) x(2) x(3)

Figure 3: Third degree PN architecture. Blue boxes depict learnable parameters, yellow depict mathematical operations,
the green and red boxes are the input and the output respectively. Note that no activation functions are involved, only
element-wise (Hadamard) products ∗ and additions +. This figure represents the recursive formula of Eq. (1).

z W[1] S[2] +

b[2]

∗

W[2]

S[3] +

b[3]

∗

W[3]

C +

β

f(z)
x(1) x(2) x(3)

Figure 4: Third order NCP network architecture.

B.2. Nested coupled CP decomposition (NCP)

The NCP model leverages a joint hierarchical decomposition, which provided strong results in both generative and
discriminative tasks in Chrysos et al. (2020; 2021b). It can be expressed with the following recursive relation:

x(n) = (W⊤
[n]z) ∗ (S

⊤
[n]x

(n−1) + b[n]) , (16)

for n ∈ [N − 1] + 1 with x(1) = W⊤
[1]z and f(z) = Cx(N) + β.

We present the first and second order partial derivatives of NCP below.

∇zx
(n)
i = w[n]:i · (s⊤[n]:ix

(n−1) + b[n]i) + (w⊤
[n]:iz) · (

k∑
j=1

s[n]ji∇zx
(n−1)
j ) (17)

∇2
zzx

(n)
i = w[n]:i(

k∑
j=1

s[n]ji∇zx
(n−1)
j )⊤ + (

k∑
j=1

s[n]ji∇zx
(n−1)
j )w⊤

[n]:i

+ (w⊤
[n]:iz) · (

k∑
j=1

s[n]ji∇2
zzx

(n−1)
j ) .

(18)

Our method can be easily extended to this type of PNs. As a reference, we obtain a verified accuracy of 76.2% with an
upper bound of 76.4% with an 2× 25 NCP at ϵ = 0.026.

B.3. Product of Polynomials

In practice, Chrysos et al. (2021b) report that to reduce further the parameters they are often stacking sequentially a number
of polynomials, see Fig. 5. That results in a setting that is referred to as product of polynomials, with the highest degree of
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expansion being defined as the product of all the degrees of the individual polynomials. Hopefully, as we will demonstrate
below, our formulation can be extended to this setting.

Let x = x(N1) be the output of a PN f1 : Rd → Rk of N th
1 -degree and y = y(N2) be the output of a PN f2 : Rk → Rk

of N th
2 -degree, with x and y coming either from Eq. (14) or Eq. (16). The product of polynomials fi and f2 is defined as

f : Rd → Ro:

f(z) = Cf2(f1(z)) + β , (19)

where C ∈ Ro×k and β ∈ Ro.

We present the first and second order partial derivatives of the Product of polynomials below.

Let z be the input, x = f1(z) and y = f2(x) by applying the chain rule of partial derivatives, we can obtain:

∇zyi =

k∑
j=i

∂yi
∂xj

∇zxj , ∇2
zzyi =

k∑
j=i

∂yi
∂xj

∇2
zzxj + J⊤

z (x)∇2
xxyiJz(x) , (20)

where J⊤
z (x) ∈ Rk×d is the Jacobian matrix.

z Wx[1] ∗ +

Wx[2]

Wy[1] ∗ +

Wy[2]

C +

β

f(z)
x(1)

x(2)

y(1) y(2)

Figure 5: Product of two 2nd-degree CCP polynomials. The final classification layer of the first polynomial is dropped, the
output x(2) is fed into a second 2nd-degree polynomial.

B.4. Convolutional PNs (C-PNs)

As seen in Chrysos et al. (2020), the performance of PNs is boosted when employing convolution operators instead of
standard linear mappings. Convolutions reduce the number of parameters and take advantage of the local 2D structure of the
images. Let Z ∈ Rc×h×w be the input image with c, h and w being the number of channels, height and width respectively.
The N th-degree CCP_Conv becomes:

X(n,i) = (Z ◦W [n,i]) ∗X(n−1,i) +X(n−1,i) ,∀n ∈ [N − 1] + 1,∀i ∈ [q] , (21)

where X(1,i) = Z ◦W [1,i],∀i ∈ [q], f(z) = Cx(N) + β and x(N) = flat(X (N)).

In order to verify C-PNs, we convert every convolutional layer into a linear layer via Toeplitz matrices (see Gehr et al.
(2018)) resulting in an equivalent CCP PN.

B.5. Details on IBP

In this section we further elaborate on the IBP for the network outputs, the gradients and Hessians by applying the notions in
Section 3.1.

IBP for network outputs In order to compute lower and upper bounds on the output of the network f(z), we apply interval
arithmetic techniques in the recursive formulas Eqs. (1) and (16). For both the CCP and the NCP cases, let x̂(n) = W⊤

[n]z:

L(x̂(n)) = W⊤
[n]

+
l+W⊤

[n]

−
u

U(x̂(n)) = W⊤
[n]

+
u+W⊤

[n]

−
l .

(22)
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In the case of CCP PNs, the recursive formula in Eq. (1) becomes x(n) = (x̂(n) + 1) ∗ x(n−1), whereas for NCP, Eq. (16)
becomes x(n) = (x̂(n)) ∗ (S⊤

[n]x
(n−1) + b[n]) for any n ∈ [N − 1] + 1, for n = 1, in both architectures x(n) = x̂(n). Then,

we can define the bounds with the following recursive formulas:

CCP



S =


(L(x̂(n)) + 1) ∗ L(x(n−1)),

(L(x̂(n)) + 1) ∗ U(x(n−1)),

(U(x̂(n)) + 1) ∗ L(x(n−1)),

(U(x̂(n)) + 1) ∗ U(x(n−1)),


L(x(n)) = min(S)

U(x(n)) = max(S)

NCP



L(S⊤
[n]x

(n−1) + b[n]) = S⊤
[n]

+ L(x(n−1)) + S⊤
[n]

− U(x(n−1)) + b[n]

U(S⊤
[n]x

(n−1) + b[n]) = S⊤
[n]

+ U(x(n−1)) + S⊤
[n]

− L(x(n−1)) + b[n]

S =



L(S⊤
[n]x

(n−1) + b[n]) ∗ L(x(n−1)),

L(S⊤
[n]x

(n−1) + b[n]) ∗ U(x(n−1)),

U(S⊤
[n]x

(n−1) + b[n]) ∗ L(x(n−1)),

U(S⊤
[n]x

(n−1) + b[n]) ∗ U(x(n−1)),


L(x(n)) = min(S)

U(x(n)) = max(S) ,

(23)

where the min and max operators are applied element-wise in sets of vectors or matrices. Finally, the output bounds are
obtained with:

L(f(z)) = C+ L(x(N)) +C− U(x(N)) + β

U(f(z)) = C+ U(x(N)) +C− L(x(N)) + β .
(24)

These operations can be implemented as a forward pass through the PN.

IBP for gradients

The next step is to obtain bounds on the gradients of the PNs. Again, with the help of interval arithmetic theory, we can
extend the recursive formulas Eqs. (8) and (17) for computing IBP bounds. In the case of CCP PNs:

L(J⊤
z (x(n))) = L(W[n] ∗ x(n−1) + (W⊤

[n]z + 1) ∗ J⊤
z (x(n−1))))

= L(W[n] ∗ x(n−1)) + L((W⊤
[n]z + 1) ∗ J⊤

z (x(n−1)))

= W+
[n] ∗ L(x

(n−1)) +W−
[n] ∗ U(x

(n−1)) + L((W⊤
[n]z + 1) ∗ J⊤

z (x(n−1)))

U(J⊤
z (x(n))) = U(W[n] ∗ x(n−1) + (W⊤

[n]z + 1) ∗ J⊤
z (x(n−1))))

= U(W[n] ∗ x(n−1)) + U((W⊤
[n]z + 1) ∗ J⊤

z (x(n−1)))

= W+
[n] ∗ U(x

(n−1)) +W−
[n] ∗ L(x

(n−1)) + U((W⊤
[n]z + 1) ∗ J⊤

z (x(n−1))) ,

(25)

with

S =



L(W⊤
[n]z + 1) ∗ L(J⊤

z (x(n−1))),

L(W⊤
[n]z + 1) ∗ U(J⊤

z (x(n−1))),

U(W⊤
[n]z + 1) ∗ L(J⊤

z (x(n−1))),

U(W⊤
[n]z + 1) ∗ U(J⊤

z (x(n−1)))


L((W⊤

[n]z + 1) ∗ J⊤
z (x(n−1))) = min(S)

U((W⊤
[n]z + 1) ∗ J⊤

z (x(n−1))) = max(S) ,

(26)
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where the Hadamard product of a Rk×d matrix with a Rd vector results in a Rk×d matrix. The min and max operators are
applied element-wise in sets of vectors or matrices.

In the case of NCP PNs:

L(J⊤
z (x(n))) = L(W[n] ∗ (S[n]x

(n−1) + b[n]) + (W⊤
[n]z) ∗ (S[n]J

⊤
z (x(n−1))))

= L(W[n] ∗ (S[n]x
(n−1) + b[n])) + L((W⊤

[n]z) ∗ (S[n]J
⊤
z (x(n−1))))

= W+
[n] ∗ L(S[n]x

(n−1) + b[n])) +W−
[n] ∗ U(S[n]x

(n−1) + b[n]))

+ L((W⊤
[n]z) ∗ (S[n]J

⊤
z (x(n−1))))

U(J⊤
z (x(n))) = U(W[n] ∗ (S[n]x

(n−1) + b[n]) + (W⊤
[n]z) ∗ (S[n]J

⊤
z (x(n−1))))

= U(W[n] ∗ (S[n]x
(n−1) + b[n])) + U((W⊤

[n]z) ∗ (S[n]J
⊤
z (x(n−1))))

= W+
[n] ∗ U(S[n]x

(n−1) + b[n])) +W−
[n] ∗ L(S[n]x

(n−1) + b[n]))

+ U((W⊤
[n]z) ∗ (S[n]J

⊤
z (x(n−1)))) ,

(27)

with
L(S[n]J

⊤
z (x(n−1))) = S+

[n] L(J
⊤
z (x(n−1))) + S−

[n] U(J
⊤
z (x(n−1)))

U(S[n]J
⊤
z (x(n−1))) = S+

[n] U(J
⊤
z (x(n−1))) + S−

[n] L(J
⊤
z (x(n−1)))

S =



L(W⊤
[n]z) ∗ L(S[n]J

⊤
z (x(n−1))),

L(W⊤
[n]z) ∗ U(S[n]J

⊤
z (x(n−1))),

U(W⊤
[n]z) ∗ L(S[n]J

⊤
z (x(n−1))),

U(W⊤
[n]z) ∗ U(S[n]J

⊤
z (x(n−1)))


L((W⊤

[n]z) ∗ (S[n]J
⊤
z (x(n−1)))) = min(S)

U((W⊤
[n]z) ∗ (S[n]J

⊤
z (x(n−1)))) = max(S) .

(28)

Eq. (25) (Eq. (27)) jointly with Eq. (26) (Eq. (28)) allows to recursively obtain gradient bounds for the CCP (NCP) PNs
starting with L(J⊤

z (x(1))) = U(J⊤
z (x(1))) = W[1]. Finally, bounds of the gradients of the network output in both CCP

and NCP cases are:
L(Jz(f)) = C+ L(Jz(x

(N))) +C− U(Jz(x
(N))) + β

U(Jz(f)) = C+ U(Jz(x
(N))) +C− L(Jz(x

(N))) + β .
(29)

IBP for Hessians Lastly, with help of interval arithmetic and aforementioned IBP for PN outputs and gradients, we can use
recursive formulas Eqs. (9) and (18) to compute bounds of the Hessian matrices.

In the case of CCP PNs:

L(Hz(x
(n)
i )) = L(∇zx

(n−1)
i w⊤

[n]:i + {∇zx
(n−1)
i w⊤

[n]:i}
⊤ + (w⊤

[n]:iz + 1)Hz(x
(n−1)
i ))

= L(∇zx
(n−1)
i )w+

[n]:i

⊤
+ U(∇zx

(n−1)
i )w−

[n]:i

⊤

+w+
[n]:iL(∇zx

(n−1)
i )

⊤
+w−

[n]:iU(∇zx
(n−1)
i )

⊤

+ L((w⊤
[n]:iz + 1)Hz(x

(n−1)
i ))

U(Hz(x
(n)
i )) = U(∇zx

(n−1)
i w⊤

[n]:i + {∇zx
(n−1)
i w⊤

[n]:i}
⊤ + (w⊤

[n]:iz + 1)Hz(x
(n−1)
i ))

= U(∇zx
(n−1)
i )w+

[n]:i

⊤
+ L(∇zx

(n−1)
i )w−

[n]:i

⊤

+w+
[n]:iU(∇zx

(n−1)
i )

⊤
+w−

[n]:iL(∇zx
(n−1)
i )

⊤

+ U((w⊤
[n]:iz + 1)Hz(x

(n−1)
i )) ,

(30)
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where

S =



L(w⊤
[n]:iz + 1)L(Hz(x

(n−1)
i )),

L(w⊤
[n]:iz + 1)U(Hz(x

(n−1)
i )),

U(w⊤
[n]:iz + 1)L(Hz(x

(n−1)
i )),

U(w⊤
[n]:iz + 1)U(Hz(x

(n−1)
i ))


L((w⊤

[n]:iz + 1)Hz(x
(n−1)
i )) = min(S)

U((w⊤
[n]:iz + 1)Hz(x

(n−1)
i )) = max(S) .

(31)

In the case of NCP PNs:

L(Hz(x
(n)
i )) = L(s[n]iJ⊤

z (x(n−1))w⊤
[n]:i + {s[n]iJ⊤

z (x(n−1))w⊤
[n]:i}

⊤ + (w⊤
[n]:iz)

k∑
j=1

sijHz(x
(n−1)
j ))

= L(s[n]iJ⊤
z (x(n−1)))w+

[n]:i

⊤
+ U(s[n]iJ⊤

z (x(n−1)))wl
[n]:i

⊤

+w+
[n]:iL(s[n]iJ

⊤
z (x(n−1)))

⊤
+w−

[n]:iU(s[n]iJ
⊤
z (x(n−1)))

⊤

+ L((w⊤
[n]:iz)

k∑
j=1

sijHz(x
(n−1)
j ))

U(Hz(x
(n)
i )) = U(s[n]iJ⊤

z (x(n−1))w⊤
[n]:i + {s[n]iJ⊤

z (x(n−1))w⊤
[n]:i}

⊤ + (w⊤
[n]:iz)

k∑
j=1

sijHz(x
(n−1)
j ))

= U(s[n]iJ⊤
z (x(n−1)))w+

[n]:i

⊤
+ L(s[n]iJ⊤

z (x(n−1)))wl
[n]:i

⊤

+w+
[n]:iU(s[n]iJ

⊤
z (x(n−1)))

⊤
+w−

[n]:iL(s[n]iJ
⊤
z (x(n−1)))

⊤

+ U((w⊤
[n]:iz)

k∑
j=1

sijHz(x
(n−1)
j )) ,

(32)

where

L(s[n]iJ⊤
z (x(n−1))) = s+[n]i L(J

⊤
z (x(n−1))) + s−[n]i U(J

⊤
z (x(n−1)))

U(s[n]iJ⊤
z (x(n−1))) = s+[n]i U(J

⊤
z (x(n−1))) + s−[n]i L(J

⊤
z (x(n−1)))

L(
k∑

j=1

sijHz(x
(n−1)
j )) =

k∑
j=1

s+ij L(Hz(x
(n−1)
j )) + s−ij U(Hz(x

(n−1)
j ))

U(
k∑

j=1

sijHz(x
(n−1)
j )) =

k∑
j=1

s+ij U(Hz(x
(n−1)
j )) + s−ij L(Hz(x

(n−1)
j )) ,

(33)
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and

S =



L(w⊤
[n]:iz)L(

k∑
j=1

sijHz(x
(n−1)
j )),

L(w⊤
[n]:iz)U(

k∑
j=1

sijHz(x
(n−1)
j )),

U(w⊤
[n]:iz)L(

k∑
j=1

sijHz(x
(n−1)
j )),

U(w⊤
[n]:iz)U(

k∑
j=1

sijHz(x
(n−1)
j ))


L((w⊤

[n]:iz)

k∑
j=1

sijHz(x
(n−1)
j )) = min(S)

U((w⊤
[n]:iz)

k∑
j=1

sijHz(x
(n−1)
j )) = max(S) .

(34)

Similarly to gradient bounds, we can recursively compute L(Hz(x
(N)
i )) and U(Hz(x

(N)
i )) starting with L(Hz(x

(1)
i )) =

U(Hz(x
(1)
i )) = 0d×d. Finally, bounds of the Hessian matrix of the output can be obtained with:

L(Hz(f(z)i)) =

k∑
j=1

c+ij L(Hz(x
(N)
j )) + c−ij U(Hz(x

(N)
j ))

U(Hz(f(z)i)) =

k∑
j=1

c+ij U(Hz(x
(N)
j )) + c−ij L(Hz(x

(N)
j )) .

(35)

C. BaB algorithm for PN robustness verification
BaB algorithms (Land & Doig, 1960) are a well known approach to global optimization (Horst & Tuy, 1996). These
algorithms intend to find the global minima of a optimization problem in the form of Eq. (4), therefore guaranteeing
soundness and completeness for verification. In this section we present the details of our BaB based verification algorithm,
we prove the theoretical convergence of BaB to the global minima of Eq. (4) and the complexity of its key steps.

Firstly, the property that we want to verify or falsify is the one given by Eq. (2). This property is defined by (i) the network
f , (ii) the adversarial budget ϵ, (iii) a correctly classified input z0 : argmaxf(z0) = t. In order to verify the property, it is
necessary that for each γ ̸= t, the global minima of Eq. (4) is greater than 0, i.e., ∀γ ̸= t : v∗ = minz∈Cin f(z)t−f(z)γ > 0.
On the contrary, in order to falsify Eq. (2), it is sufficient that for any γ ̸= t the global minima of Eq. (4) is smaller or equal
than 0, i.e., ∃γ ̸= t : v∗ = minz∈Cin f(z)t − f(z)γ ≤ 0. In order to reduce execution times, we heuristically sort all the γ
in decreasing order by network output, {γi : γi ̸= t, f(z0)γi

≥ f(z0)γj
∀j > i} and solve Eq. (4) until one global minima

is smaller or equal to 0 or all global minimas are greater than 0.

In order to solve Eq. (4), we use Algorithm 1. Without any modifications, this algorithm converges to the global minima.
However, for verification, it is sufficient to find that the lower bound of the global minima (global_lb) cannot be smaller
than or equal to 0, or that the upper bound of the global minima in a subset (prob_ub) is smaller than 0, i.e., there exists an
adversarial example in that subset. Therefore we can cut the execution early when employed for verification, these optional
changes are highlighted in red in Algorithm 1.

Algorithm 1 can theoretically be applied to any twice-differentiable classifier provided we have a method for computing
an α for obtaining valid α-convexification bounds. For this matter, we propose Algorithm 2, which again can be used for
any twice-differentiable classifier if we are able to compute its lower bounding Hessian LH . In the PN case, we propose a
method for evaluating the matrix-vector product LHv, this is covered in Algorithm 3.

Complexity of LHv evaluation Algorithm 3 is governed by an outer loop which performs N − 1 iterations, see line 5.
Inside the loop, the most expensive operations are in lines 6, 9, 10, 11 and 12, the rest of operations can be performed in
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Algorithm 1 Branch and Bound, adapted from (Bunel et al., 2020a)
1: function BAB(f, l, u, t, γ)
2: global_ub← inf
3: global_lb← − inf
4: α← compute_alpha(f, l, u, t, γ) ▷ Algorithm 2
5: probs← [(global_lb, l, u)]
6: while global_ub− global_lb > 10−6 and global_lb ≤ 0 do
7: ([], l′, u′)← pick_out(probs) ▷ Take subset with the minimum lower bound
8: [(l_1, u_1), . . . , (l_s, u_s)]← split(l′, u′) ▷ Split widest input variable interval in halves
9: for i = 1 . . . s do

10: prob_ub← compute_UB(f, l_i, u_i, t, γ) ▷ PGD over the original function g(z)
11: prob_lb← compute_LB(f, l_i, u_i, t, γ, α) ▷ PGD over gα(z, α)
12: if prob_ub < global_ub then
13: global_ub← prob_ub
14: prune_problems(probs, global_ub) ▷ Remove if prob_lb > global_ub
15: end if
16: if prob_lb < global_ub and prob_lb ≤ 0 then
17: probs.append((prob_lb, l_i, u_i))
18: end if
19: if prob_ub ≤ 0 then ▷ An adversarial example was found
20: return [], 0
21: end if
22: end for
23: if |probs| == 0 then ▷ prob_lb > 0 for every subset
24: return [], 1
25: end if
26: global_lb← min{lb | (lb, [], []) ∈ probs}
27: end while
28: return global_ub, global_ub > 0
29: end function

Algorithm 2 Power method for α estimation
1: function COMPUTE_ALPHA(f, l, u, t, γ)
2: v← init_v(f, l, u, t, γ) ▷ Ensure v is not an eigenvector of LH and ||v||2 = 1
3: prev_v← 0
4: r← 0
5: while ||v− prev_v||2 > 10−6 do
6: prev_v← v
7: v← evaluate_LHv(f, l, u, t, γ, v) ▷ Algorithm 3
8: r← ||v||2
9: v← v/r

10: v← evaluate_LHv(f, l, u, t, γ, v) ▷ Evaluate LHv twice to deal with negative eigenvalues.
11: r← ||v||2
12: v← v/r
13: end while
14: return r/2
15: end function
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O(d) time. In line 5, the bounds of the gradients are computed, this operation can be performed for every level n ∈ [N ]
outside the main loop and store the results using O(N · d · k) time. For lines 9, 10, 11 and 12, an outer loop with k iterations
is used for the summation. Then, inside the summation, four dot products plus vector-scalar multiplications are performed,
leading to a time complexity of O(k · d). Overall, the complexity of Algorithm 3 is O(N · d · k).

Algorithm 3 Evaluation of LHv for a CCP PN, implementation of Proposition 1
1: function EVALUATE_LHV(f, problem, v, t, γ)
2: lw← ct: − cγ:
3: uw← ct: − cγ: ▷ Initial upper and lower bounds of the δ weight are given by the last linear layer.
4: result← 0
5: for n = degree(f) . . . 2 do
6: lg, ug← L(Jz(x

(n))),U(Jz(x
(n)))

7: S1← {lg · lw, lg · uw, ug · lw, ug · uw}
8: lg, ug← min(S1), max(S1)

9: Lv←
∑k

i=1 w[n]:i
+ · lg[i, :]⊤v+w[n]:i

− · ug[i, :]⊤v+ lg[i, :] ·w⊤
[n]:i

+
v+ ug[i, :] ·w⊤

[n]:i

−
v

10: Uv←
∑k

i=1 w[n]:i
+ · ug[i, :]⊤v+w[n]:i

− · lg[i, :]⊤v+ ug[i, :] ·w⊤
[n]:i

+
v+ lg[i, :] ·w⊤

[n]:i

−
v

11: L1←
∑k

i=1 w[n]:i
+ · lg[i, :]⊤1+w[n]:i

− · ug[i, :]⊤1+ lg[i, :] ·w⊤
[n]:i

+
1+ ug[i, :] ·w⊤

[n]:i

−
1

12: U1←
∑k

i=1 w[n]:i
+ · ug[i, :]⊤1+w[n]:i

− · lg[i, :]⊤1+ ug[i, :] ·w⊤
[n]:i

+
1+ lg[i, :] ·w⊤

[n]:i

−
1

13: result← result+ (Lv+ Uv)/2 + ((L1− U1)/2) ∗ v
14: lx, ux← L(W⊤

[n]z + 1),U(W⊤
[n]z + 1)

15: S2← {lx · lw, lx · uw, ux · lw, ux · uw}
16: lw, uw← min(S2), max(S2) ▷ Update bounds of the weight (L δ′,U δ′), see Proposition 1
17: end for
18: return result
19: end function

D. Proofs
Proposition 1. Let δ be a real-valued upper and lower bounded weight, the matrix-vector products L(δ · ∇2

zzx
(n)
i )v and

U(δ · ∇2
zzx

(n)
i )v can be evaluated as:

L(δ · ∇2
zzx

(n)
i )v = L(δ · ∇zx

(n−1)
i )w⊤

[n]:i

+
v

+ U(δ · ∇zx
(n−1)
i )w⊤

[n]:i

−
v

+w[n]:i
+ L(δ · ∇zx

(n−1)
i

⊤
)v

+w[n]:i
− U(δ · ∇zx

(n−1)
i

⊤
)v

+ L(δ′∇2
zzx

(n−1)
i )v

(36)

U(δ · ∇2
zzx

(n)
i )v = L(δ · ∇zx

(n−1)
i )w⊤

[n]:i

−
v

+ U(δ · ∇zx
(n−1)
i )w⊤

[n]:i

+
v

+w[n]:i
− L(δ · ∇zx

(n−1)
i

⊤
)v

+w[n]:i
+ U(δ · ∇zx

(n−1)
i

⊤
)v

+ U(δ′∇2
zzx

(n−1)
i )v ,

(37)

where δ′ = δ · (w⊤
[n]:iz + 1) and vectors L(δ · ∇zx

(n−1)
i ) and U(δ · ∇zx

(n−1)
i ) can be obtained through IBP on Eq. (8).

D.1. Convergence of the BaB algorithm to the global minima.

In this section we demonstrate a key property for verification: convergence to the global minima of Eq. (4). Let us firstly
define some concepts of the BaB algorithm.
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Let Sk be the subset picked at iteration k of the BaB algorithm and {Skq|q = 0, 1, ...} be the sequence of recursive subsets,
so that Skq ⊂ Skq−1 and Sk0 = Sk. Let L(Skq) be the lower bound of subset Skq and Lkq = min{L(Skq)|q = 0, 1, ...}
the lower bound in the branch rooted by subset Sk, we analogously define U(Skq) and Ukq. Finally, let a fathomed or
pruned set Skq be a set where L(Skq) > Ukq . From Horst & Tuy (1996, Definition IV.4):

Definition 1. A bounding operation is called consistent if at every step any unfathomed subset can be further split, and if
any infinitely decreasing sequence {Skq|q = 0, 1, ...} for successively refined partition elements satisfies:

lim
q→∞

(Ukq − L(Skq)) = 0 . (38)

Remark. Because U(Skq) ≥ Ukq ≥ L(Skq), it suffices to prove that limq→∞ (U(Skq)− L(Skq)) to show a bounding
operation is consistent.

Another relevant property is the subset selection being bound improving. Let Pk be the set of unfathomed subsets at
iteration k (probs variable in Algorithm 1), from Horst & Tuy (1996, Definition IV.6):

Definition 2. A subset selection operation is called bound improving if, at least each time after a finite number of steps, Sk

satisfies the relation:
Sk = argmin{L(S) : S ∈ Pk} . (39)

Then, this ensures at least one partition element where the actual lower bound is attained is selected for further partition in
step k of the algorithm.

Finally, Horst & Tuy (1996, Theorem IV.3) cover global convergence of general BaB algorithms.

Theorem 1. In a BB procedure, suppose that the bounding operation is consistent and the subset selection operation is
bound improving. Then the procedure is convergent:

L := lim
k→∞

Lk = lim
k→∞

f(z(k)) = min
z∈Cin

f(z) = lim
k→∞

Uk = U , (40)

where Cin is the feasible set of the initial problem, Lk and Uk are the global lower and upper bounds at iteration k and z(k)

is the point where the upper bound Uk is attained.

Remark. In Theorem 1, Lk and Uk refer to variables global_lb and global_ub respectively in Algorithm 1.

Lemma 1. Selecting the subset with the lowest lower bound at every iteration of a BaB algorithm is a bound improving
subset selection strategy.

Proof. By definition, when selecting the subset with the lowest lower bound, we are selecting at every iteration Sk =
argmin{L(S) : S ∈ Pk}, which means that Eq. (39) holds at every iteration k and the strategy is bound improving.

Definition 3. Let subset Sk, {Skq|q = 0, 1, ...} the sequence of recursive subsets rooted at Sk0 = Sk a branching operation
is convergent iff limq→∞ |Skq| = 0.

Lemma 2. Selecting the widest interval index i = argmaxu− l to split a problem, is a convergent branching operation.

Proof. Supose at subset Skq, we have bounds l(q) and u(q) and indexes i1, i2, ..., id so that u(q)
i1

− l
(q)
i1

≥ u
(q)
i2

− l
(q)
i2

≥

· · · ≥ u
(q)
id

− l
(q)
id

is the decreasing ordered list of interval widths, then |Skq| = ||u(q) − l(q)||2 =
√∑d

j=1(u
(q)
j − l

(q)
j )2 ≤√∑d

j=1(u
(q)
i1

− l
(q)
i1

)2 =
√
d(u

(q)
i1

− l
(q)
i1

)2 = (u
(q)
i1

− l
(q)
i1

)
√
d. Then, at subset Skq+1, with bounds l(q+1) and u(q+1)

and new indices j1, j2, ..., jd, u(q+1)
i1

− l
(q+1)
i1

=
u
(q)
i1

−l
(q)
i1

2 and then j1 is either equal to i1 or to i2, depending on whether
u
(q)
i1

−l
(q)
i1

2 > u
(q)
i2

− l
(q)
i2

or not. Finally, as: u
(q)
i1

− l
(q)
i1

>
u
(q)
i1

−l
(q)
i1

2 = u
(q+1)
j1

− l
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if
u
(q)
i1
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(q)
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(q)
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> u
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(q)
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if
u
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i1

−l
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2 ≤ u
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− l
(q)
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(41)
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and u
(q)
i1

− l
(q)
i1

≥ 0, the sequence {u(q)
i1

− l
(q)
i1

}q is strictly decreasing and lower bounded by 0, then limq→∞ u
(q)
i1

− l
(q)
i1

= 0

must hold. Then limq→0(u
(q)
i1

− l
(q)
i1

)
√
d = 0 and as (u(q)

i1
− l

(q)
i1

)
√
d ≥ |Skq| ≥ 0, the property limq→∞ |Skq| = 0 holds

and by Definition 3, the branching operation is convergent.

A consequence of Lemma 2 is the following Corollary.

Corollary 2. For any z ∈ [l(q),u(q)] , if limq→∞ |Skq| = 0, in the limit l(q)i = zi = u
(q)
i ∀i = 1, ..., d, ∀z ∈ [l,u].

Lemma 3. Let widest interval selection be the branching operation, lower bounds obtained by α-convexification with
α ≥ max{0,− 1

2 min{λmin(Hf (z)) : z ∈ [l,u]}} and upper bounds obtained by evaluating U(Skq) = g(zupper) for any
zupper ∈ [l,u] are consistent.

Proof. By Definition 1 is sufficient to check that limq→∞ (U(Skq)− L(Skq)) = 0. By definition, the lower bound L(Skq))
is the solution to the function in Eq. (5) subject to z ∈ [l,u], which will lead to an optimal zopt and L(Skq)) = gα(z

opt).
If the upper bound is given by evaluating the objective function at any point zupper ∈ [l,u] e.g., zupper = zopt or in
our case zupper = zPGD, the point obtained by performing PGD over g, U(Skq) = f(zupper), and their difference is:
U(Skq) − L(Skq) = g(zupper) − g(zopt) − α

∑d
i=1(z

opt
i − l

(q)
i )(zopt

i − u
(q)
i ). By virtue of Theorem 2, in the limit,

l(q) = zopt = zupper = u(q) and therefore limq→∞ U(Skq)−L(Skq) = g(l)− g(l)−α
∑d

i=1(l
(q)
i − l

(q)
i )(l

(q)
i − l

(q)
i ) = 0

and the bounds are consistent.

Lemma 4. Let widest interval selection be the branching operation, lower bounds obtained by IBP and upper bounds
obtained by evaluating U(Skq) = g(zupper) for any zupper ∈ [l,u] are consistent.

Proof. By Definition 1 is sufficient to check that limq→∞ (U(Skq)− L(Skq)) = 0. By definition, the lower bound L(Skq)
is given by L(g(z)) = L(f(z)t)− U(f(z)γ), see Section 3.1, and the upper bound is given by U(Skq)) = g(zupper). By
virtue of Theorem 2, in the limit, l(q) = zupper = u(q), then limq→∞ U(Skq)) = g(l). Then, for Eq. (22), it can be easily
found that limq→∞ L(x̂(n)) = limq→∞ U(x̂(n)) = W⊤

[n]l. Then, for Eq. (23), every element in the sets S will converge to
the same value and therefore, L(x(n)) = minS = maxS = U(x(n)) for both CCP and NCP for every layer n. Finally, for
the network’s output, because L(x(N)

i ) = U(x(N)
i ), then, from Eq. (24), L(f(z)i) = U(f(z)i) = f(l)i,∀i ∈ [o]. Then,

L(Skq)) = L(f(z)t − f(z)γ) = L(f(z)t) − U(f(z)γ) = f(l)t − f(l)γ = f(zupper)t − f(zupper)γ = U(Skq)) and the
property holds.

A consequence of Lemmas 2 to 4 is:

Corollary 3. Any branch and bound procedure with widest interval selection for branching, lowest lower bound subset
selection and a bounding operation of: IBP or α-convexification, is convergent.

Proof. Because of Lemma 2, we have convergence of the branching procedure. Then, due to Lemmas 3 and 4, we have
bound consistency for both IBP and α-convexification bounding mechanisms. By Lemma 1, we have that the subset
selection strategy is bound improving. Therefore, because of Theorem Theorem 1, we have that any BaB algorithm with
these properties converges to a global minimizer.
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D.2. Lower bound of the minimum eigenvalue of the Hessian of PNs

Proof of Proposition 1. Let δ′ = δ · (w⊤
[n]:iz+1). Using the IBP rules from Section 3.1 and Appendix B.5, we can develop:
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Analogously, for the upper bound:
U(δ · ∇2
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(43)

D.3. Lower bound of the Hessian’s minimum eigenvalue for the product of polynomials case.

To verify a product of polynomials network, we need a lower bound of the minimum eigenvalue of its Hessian. In
Proposition 2 we propose a valid lower bound.

Proposition 2. Let x and y be the input and output of a polynomial. Let

Ĵz(x) = argmax{ρ(JJ⊤) : J ∈ [L(Jz(x)),U(Jz(x))]} = max{| L(Jz(x))|, | U(Jz(x))|} (44)

be the Jacobian matrix with the largest possible norm. Let ρ be the spectral radius of a matrix. For all z ∈ [l,u], the
minimum eigenvalue of the hessian matrix of every position i (λmin(∇2

zzyi)) satisfies:

λmin

(
∇2

zzyi

)
≥

k∑
j=i

λmin

( ∂yi
∂xj

∇2
zzxj

)
− ρ

(
Ĵz(x)Ĵ

⊤
z (x)

)
· ρ

(
LH(∇2

xxyi)
)
. (45)
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Table 3: Description of convolutional PNs used in our experiments.

Name degree / N kernel size stride padding channels
PN_Conv2 2 5× 5 2 2 32
PN_Conv4 4 7× 7 4 3 64

Proof.
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⊤
z (x))ρ(LH(∇2

xxyi)
)
, [Eq. (44)]

(46)

where in the second to last inequality we use ρ(B⊤AB) = ρ(BB⊤A) ≤ ρ(BB⊤)ρ(A),∀A ∈ Rd1×d1 ,B ∈ Rd1×d2 .

E. Auxiliary experimental results and discussion
We start this section by comparing the performance of our method with ReLU NN verification algorithms Appendix E.1.
Then, in Appendix E.2 we perform an ablation study on the effect the input size of the network has in our PN verification
algorithm.

Additional notation: In addition to the notation already defined in the main paper, we use ◦ for convolutions.

E.1. Comparison with ReLU BaB verification algorithms.

Complete ReLU NN verification algorithms are usually benchmarked against other methods in the networks and ϵ values
proposed by Singh et al. (2019). ReLU NN verification algorithms mostly rely on the specific structure of the networks, e.g.
ReLU activation, which makes a direct comparison with ReLU nets hard. However, we match these benchmarks by training
PNs with same degree as the number of ReLU layers and similar number of parameters. For a detailed description of these
networks check Table 5 and Table 6.

When comparing with the SOTA verifier β-CROWN (Wang et al., 2021), we firstly observe that the upper bound of verified
accuracy is very similar between the NNs and PNs fully connected benchmarks. However, for convolutional PNs (C-PNs)
the upper bound is much lower, even 0 for PN_Conv4 trained in the MNIST dataset, see Table 4. Secondly, we observe
that the gap between the upper bound and verified accuracy (U.B. and Ver.% in Table 4) is small for β-CROWN. In our
case, this gap is only small for the shallowest PN and smallest ϵ (5× 81 with ϵ = 0.015), obtaining 88.0% verified accuracy
and outperforming β-CROWN with only 77.4%. For PN_Conv2 trained in CIFAR10 and evaluated at ϵ = 2/255, our
verified accuracy, 15.7%, is also really close to the upper bound 16.1%, but both are low in comparison with the β-CROWN
equivalent.
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Table 4: Verification results on our proposed PN verification benchmarks. We run our verification procedure over the first
1000 images of the test split of each dataset. Time(s) refers to the average running time per image when the verification
was not timed out, i.e., we can verify or falsify the property in the given time limit, Ver.% is the verified accuracy and
U.B. its upper bound. We use the same ϵ values as Wang et al. (2021). We observe that in comparison with β-CROWN,
our method generally has a larger gap between verified accuracy and its upper bound.

β-CROWN∗

Dataset (Wang et al., 2021) VPN
Model Time(s) Ver.% U.B. Model Time(s) Ver.% U.B.

MNIST

6× 100 102 69.9 84.2 5× 30 34 24.7 81.1
6× 200 86 77.4 90.1 5× 81 60 88.0 91.1
9× 100 103 62.0 82.0 8× 24 33 0.0 80.2
9× 200 95 73.5 91.1 8× 70 94 0.6 91.6

ConvSmall 7.0 72.7 73.2 PN_Conv2 3.0 3.5 12.1
ConvBig 3.1 79.3 80.4 PN_Conv4 8.9 0.0 0.0

CIFAR10 ConvSmall 6.8 46.3 48.1 PN_Conv2 63.4 15.7 16.1
ConvBig 15.3 51.6 55.0 PN_Conv4 161.4 9.4 16.3

∗Note: We report numbers from Wang et al. (2021).

Table 5: Comparison of PNs to the fully connected ReLU network benchmarks proposed in Singh et al. (2019). #Par.
refers to the number of parameters in the ReLU benchmark and our PNs respectively. We build PNs with same degree as
number of non-linearities in their corresponding ReLU NN benchmark. We also adjust the hidden size so that the number of
parameters is matched.

ReLU NN #Par. Acc.(%) PN #Par. Acc.(%)
6× 100 119, 910 96.0 5× 30 117, 910 97.2
9× 100 150, 210 94.7 8× 24 150, 778 97.5
6× 200 319, 810 97.2 5× 81 318, 340 96.2
9× 200 440, 410 95.0 8× 70 439, 750 96.7

E.2. Effect of the input size in PN verification

In this experiment we evaluate the effect of the input size in the verification of a PN. In order to evaluate this, we train 3
different CCP networks over the STL10 dataset. Each model has been trained with STL10 images preprocessed with 3
different resizing factors. Every network is a CCP_4× 25 trained with a learning rate of 10−4.

As seen in Table 7, downsampling the input images results in a decrease in the accuracy (i.e., from 35.1% to 31.8% at
32× 32 resolution). However, downsampling the input improves the robustness of the network. For all ϵ values we observe
less successful adversarial attacks, i.e., higher upper bound of the verified accuracy (U.B.). In addition, the verification
process is improved, we obtain higher values for verified accuracy (Ver.%), but also the gap with its upper bound is
reduced. We believe this phenomenon is due to the networks learning more robust representations with a smaller input size
(Raghunathan et al., 2020; Zhang et al., 2019).

Table 6: Comparison of convolutional PNs (C-PNs) to the Convolutional ReLU network benchmarks proposed in Singh
et al. (2019). #Par. refers to the number of parameters in the ReLU benchmark and our PNs respectively. We build C-PNs
with same number of convolutional layers as their corresponding ReLU NN benchmark.

Dataset ReLU NN #Par. Acc.(%) PN #Par. Acc.(%)
MNIST Conv Small 89, 606 98.0 PN_Conv2 114, 218 98.0
MNIST Conv Big 1, 974, 762 92.9 PN_Conv4 834, 762 98.0

CIFAR10 Conv Small 125, 318 63.0 PN_Conv2 133, 994 57.2
CIFAR10 Conv Big 2, 466, 858 63.1 PN_Conv4 845, 514 58.3
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Table 7: Input size ablation study: CCP_4 × 25 networks are trained over STL10 with three different input sizes. Both
Verified accuracy (Ver.%) and its upper bound (U.B.) increase when the input size is reduced for all the studied ϵ values.

Input size Acc.% ϵ
VPN

Time(s) Ver.% U.B.
3× 96× 96 35.1 1/255 47.4 4.8 10.6

(original) 2/255 19.0 0.0 2.4
8/255 21.5 0.0 0.0

3× 64× 64 35.6 1/255 52.1 11.7 12.6
2/255 20.7 0.6 3.2
8/255 12.0 0.0 0.0

3× 32× 32 31.8 1/255 14.7 17.9 18.0
2/255 21.4 7.2 8.9
8/255 16.2 0.0 0.1
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