
Safety Verification and Repair of Deep Neural Networks

Xiaodong Yang 1 Tom Yamaguchi 2 Bardh Hoxha 2 Danil Prokhorov 2 Taylor T Johnson 1

Abstract
This paper presents the Veritex tool for safety
verification and repair of deep neural networks
(DNNs). Veritex includes methods for ex-
act (sound and complete) analysis and over-
approximative (sound and incomplete) reachabil-
ity analysis of DNNs using novel set representa-
tions, including the facet-vertex incidence matrix,
face lattice, and V-zono. In addition to sound
and complete safety verification of DNNs, these
methods can also efficiently compute the exact
output reachable domain, as well as the exact un-
safe input space that causes safety violations of
DNNs in the output. More importantly, based on
the exact unsafe input-output reachable domain,
Veritex can repair unsafe DNNs on multiple safety
properties with negligible performance degrada-
tion. The repair is conducted by updating the
DNN parameter through retraining. The approach
also works in the absence of the safe model refer-
ence and the original dataset for learning. Veritex
primarily addresses the issue of constructing prov-
ably safe DNNs, which is not yet significantly
addressed in most of the current formal methods
for trustworthy artificial intelligence (AI). The
utility of Veritex is evaluated for these two as-
pects, specifically safety verification and DNN
repair. Benchmarks for verification include the
ACAS Xu networks, and benchmarks for the re-
pair include unsafe ACAS Xu networks and an
unsafe agent trained in deep reinforcement learn-
ing (DRL).

1. Introduction
Deep neural networks (DNNs) have been widely utilized in
safety-critical systems with learning-enabled components,

*Equal contribution 1Vanderbilt University, Nashville, USA
2TRINA, Toyota NA R&D, Ann Arbor, MI, USA. Correspondence
to: Bardh Hoxha <bardh.hoxha@toyota.com>, Taylor T Johnson
<taylor.johnson@vanderbilt.edu>.

1 st Workshop on Formal Verification of Machine Learning, Bal-
timore, Maryland, USA. Colocated with ICML 2022. Copyright
2022 by the author(s).

such as autonomous vehicles. Despite successful applica-
tions in many areas, their trustworthiness remains a major
concern in realizing reliable autonomy due to their black-
box nature with complex nonlinear characteristics. It has
been shown that slight perturbations in their inputs can cause
unpredictable misbehavior in the output. Recently, much ef-
fort has been made to develop techniques for formal analysis
of DNNs, such as their safety certification (Tran et al., 2020;
Katz et al., 2019; Shriver et al., 2021; Dutta et al., 2018; Tran
et al., 2019; Singh et al., 2019; Yang et al., 2021a; Botoeva
et al., 2020; Sotoudeh & Thakur, 2021; Wang et al., 2020).
However, these methods that conduct post-training verifi-
cation of DNNs can not address the problem of producing
provable safe DNNs when they violate safety specifications.

In this paper, we introduce a tool called Veritex that per-
forms set-based reachability analysis of DNNs, safety cer-
tification, and repair of unsafe DNNs. The reachability
analysis includes the computation of both the exact and
over-approximated output reachable domain for an input
domain, and also the computation of the exact unsafe input
space that leads to the safety violation in the output. Here,
the reachable domain contains all the possible reachable
states of a system given an input bounded domain. It is
a union of reachable sets, which refer to bounded convex
polytopes. A variety of efficient set representations are uti-
lized to construct the reachable set, such as facet-vertex
incidence matrix (FVIM) (Yang et al., 2021a), face lattice
(FLattice) (Yang et al., 2021b) and V-zono (Yang et al.,
2022). If the exact output reachable domain does not inter-
sect with specified unsafe domains, the DNN is determined
to be safe by Veritex. Otherwise, the DNN is unsafe and
Veritex computes the entire unsafe input space. The re-
pair in Veritex is a retraining process. Based on the unsafe
input-output reachable domain computed in the reachabil-
ity analysis, Veritex can repair an unsafe DNN on multiple
safety properties with negligible impact on its original per-
formance. Here, the safety property refers to specifications
that describe a desired or unsafe output domain of a DNN
for an input domain.

Veritex primarily supports feedforward neural networks
(FFNNs) which are commonly used as controllers in
learning-enabled control systems. It can perform reachabil-
ity analysis, safety verification and unsafe network repair.
It also supports the reachability analysis and safety verifi-

Submission and Formatting Instructions for WFVML 2022

 Solver

Exact Analysis

Over-approximated
 Analysis

Neural Network Repair

Network Model
(ONNX, PyToch)

Safety Properties

Safe Model
(ONNX, PyTorch)

Reachable
Sets

Visualizer

Verifier

AnalyzerReachability
Analysis

Plot exact Output
Reachable Domain

&
Exact Unsafe
Input Domain

Safe / Unsafe

Engine

Figure 1. An overview of Veritex architecture.

cation of convolutional neural networks (CNNs). To speed
up its computation, we also design a work-stealing parallel
framework. It is a well known scheduling algorithm for
dynamic multi-threaded computation. In the evaluation, two
cases studies are presented. They include the safety verifi-
cation and repair of ACAS Xu networks (Katz et al., 2017),
and an unsafe DNN agents for a rocket-lander system in
DRL (roc). The experimental results show that Veritex has
the highest efficiency in the safety verification of the ACAS
Xu networks compared to all 13 related works, and that it
can repair all unsafe DNNs with negligible performance
degradation. Veritex currently supports DNNs with low-
dimensional inputs. It has been shown that the exact analy-
sis of DNNs is a NP-complete problem (Katz et al., 2017).
Existing exact analysis methods, including our approaches
based on FVIM and Flattice, are only scalable to neural net-
works with small input ranges. To handle limitations of the
exact analysis, our tool also includes an over-approximation
method based on activation-function linearization, which
maintains the possibility of supporting large-scale DNNs
for image classification in the future.

2. Overview and Features
Veritex is an object-oriented software programmed in
Python. It takes in two inputs as shown in Fig. 1, the net-
work model and safety properties. Veritex supports the
standardized format ONNX and PyTorch for the network
and the unified format VNN-LIB1 for the safety properties.
In DNN verification, VNN-LIB is the emerging standard
that can specify safety properties of a DNN by defining
their input domains and their corresponding unsafe output
domains. Roughly for specifications, it is an extension of
SMT-LIB with additional assumptions. With the network
model and its safety properties, Veritex can compute the
exact or over-approximated output reachable domain and
also the entire unsafe input space if exists. It supports the
plotting of 2 or 3-dimensional polytopes. When the repair
option is enabled, it will produce a provable safe network
in ONNX or PyTorch format. Unlike tools (era; ver; cro;

1http://www.vnnlib.org/standard.html

Table 1. Overview of primary features in Veritex. FC stands for
fully-connected layers. CONV stands for convolutional layer. BN
stands for batch normalization.

Feature Exact Analysis Over-approximation
Analysis

Set representations FVIM, FLattice V-zono
Safety Verification Sound and complete Sound
Network Repair Provably safe networks (FFNNs)
Activation Function ReLU ReLU, Sigmoid, Tanh
Layer Types FC, CONV, MaxPool, BN
Parallel Computing Work-stealing parallel

Bak, 2021; Tran et al., 2020; Katz et al., 2019), Veritex
does not involve LP problems in the reachability analysis
and verification of DNNs. Therefore, it does not require
any commercial optimization solvers, which makes its in-
stallation straightforward. The main features of Veritex are
summarized in Table 1.

2.1. Engine and Components

The engine of Veritex contains two main modules: reacha-
bility analysis of DNNs and DNN repair, as shown in Fig. 1.
The former contains functions to compute the reachable
domains of a DNN. The latter contains functions to repair
unsafe DNN on multiple safety properties.

2.1.1. REACHABILITY ANALYSIS MODULE

The module includes a solver for the computation of the
reachable domain and an analyzer for the safety verification
and and reachable-domain visualization. The solver con-
structs the incoming network model and its safety properties
with a network object and a set of property objects. It can
compute the exact or over-approximated output reachable
domain of the network. It can also compute the exact unsafe
input space using the backtracking algorithm (Yang et al.,
2021a) in the exact analysis.

The exact analysis utilizes set representations FVIM and
Flattice to compute output reachable sets whose union is

http://www.vnnlib.org/standard.html

Submission and Formatting Instructions for WFVML 2022

the exact output reachable domain. These reachable sets
can be sent to the verifier for a sound and complete safety
verification, which returns either ”safe” or ”unsafe”. The
over-approximation utilizes the set representation V-zono
to over approximate the output reachable domain. This
reachable domain can be sent to the verifier for a sound but
incomplete safety verification, which returns either ”safe”
or ”unknown”. The visualizer plots a reachable domain by
projecting it into a 2 or 3-dimensional space. This visual-
ization is critical for the analysis of the impact of repair
methods on DNN reachability.

2.1.2. DNN REPAIR MODULE

This module eliminates safety violations through optimiza-
tion of a loss function in the retraining of a DNN. In each
iteration of repair, it interacts with the reachability analy-
sis module. Given a DNN and its violated safety proper-
ties, they are first fed into the reachability analysis module,
where its exact unsafe input-output reachable domain over
these properties are computed. Recall that the reachable do-
main consists of reachable sets, which are convex polytopes.
Then, the vertices of these sets are selected as representative
data pairs (x, y) to fully represent this reachable domain.
They distribute over this domain, including all its extreme
points. They are used to construct the distance between
the unsafe reachable domain and the safe domain of the
DNN. By minimizing this objective function, the repair can
gradually eliminate the unsafe reachable domain, generat-
ing a provably safe DNN. When there is a safe model as a
reference for the repair, adversarial x can be fed into this
model to generate safe and correct ŷ for the repair. Other-
wise, ŷ is set to the closet safe output to y for the minimal
modification.

In addition to the objective function above, the repair also
incorporates another objective function into the loss func-
tion, which aims to minimize the DNN parameter deviation.
This is because slight changes in the parameter can cause
unexpected performance degradation. This function min-
imizes the difference between the predicted output of the
repaired network for the training data and the true output
in the training data. A weighted-sum method is applied
for this multi-objective optimization problem. Two positive
real-valued α and β represent the weights of each objective
function and α + β = 1. This repair is named the mini-
mal repair. If the original dataset is not available, it can be
sampled from the original network. The sampled data are
purified by removing unsafe data before the training. Or
users can set α = 1 and β = 0 to transform the optimization
into a single-objective optimization. Then, only the objec-
tive function for repair is considered, which is named the
non-minimal repair.

In practice, the solving of the minimal repair is less efficient

than the non-minimal repair due to the Pareto optimality
issue in the multi-objective optimization, where one objec-
tive function cannot be optimized without worsening the
optimization of other objective functions.

2.2. Work-stealing Parallel computation

In the exact analysis, different linearities that the ReLU
activation function exhibits over its input ranges x ≥ 0
and x < 0 are separately considered. Therefore, when an
input reachable set to one ReLU neuron spans its two input
ranges, this set will be divided into two subsets which are
separately processed with respect to the linearity in that
range. Afterward, these two subsets will be input sets to
another neuron. Here, the state S = (P, l,N) is defined
for this computation, where P is a reachable set, l denotes
the index of that layer, and N denotes a list of neurons in
the layer that will process S. After one neuron, the state S
spawns at most two states S ′s with updated P ′s and N ′s.
This state concept is also applied in the max-pooling layer.
One pooling operation normally contains more linearities
than the ReLU neuron and thus spawns more states. In
the affine-mapping layer, such as fully-connected layer and
convolutional layer, P in the state will be transformed to
one new reachable set P ′ accordingly.

In the work-stealing parallel computing, each processor
computes their states and store additional states in a local
queue for future processes. One processor becomes idle
when its local queue is empty. Then this processor steals
states from other processors with a globally-shared queue
as the agent, such that it can enable the full use of the
processors. The process of states will be terminated once
they reach the end of the DNN, where different callback
functions can be invoked. In this phase, the reachable set
P in the state is an output reachable set of the DNN. The
callback functions include the safety verification and the
computation of unsafe input space with the backtracking
algorithm.

3. Reachability Analysis and Set
Representations

3.1. Reachability Analysis

The reachability analysis in Veritex includes the computa-
tion of exact or over-approximated output reachable domain
and exact unsafe input subspace for a bounded input domain.
This computation can be formulated by

L(P) = (En ◦ · · · ◦ E2 ◦ E1 ◦ T)(P)

N (P) = (Ln ◦ · · · ◦ L2 ◦ L1)(P)

where L denotes the reachable-set computation in one layer,
P denotes an input reachable set, E denotes the computation
in one ReLU neuron and T denotes the preceding affine

Submission and Formatting Instructions for WFVML 2022

mapping. The reachable sets are computed layer by layer
until the last layer. Similarly, in the computation of CNNs,
E also refers to one pooling operation in the max-pooling
layer, and T also refers to the convolutional computation or
the batch normalization. The non-linearity of ReLU DNNs
origins from piecewise linearity of the max function in the
ReLU activation function and max-pooling operation. In the
exact analysis, different linearities are separately considered
for the reachable-set computation. Therefore, an output
reachable set is actually the output of a linear region of the
DNN. A linear region refers to a maximal convex subspace
of the input domain, on which the DNN is linear.

3.2. Set Representations

The set representation encodes geometric information of
a convex polytope, which directly affects the efficiency of
reachability analysis. Veritex includes multiple set represen-
tations, FVIM, FLattice and V-zono.

3.2.1. FACET-VERTEX INCIDENCE MATRIX (FVIM)

FVIM is an efficient representation to encode the combina-
torial structure of a polytope. Since this set representation
tracks the vertices (extreme points) of a polytope, any LP
problems involved can be avoided. There are two types of
operations on FVIM in the reachable-set computation. The
first one is the affine mapping from the weight parameter
in the fully-connected layer, the convolutional layer and
the batch normalization. This operation will only modify
the value of vertices but preserve the FVIM of a polytope.
Therefore, its implementation in Veritex is straightforward.
The other operation is the process by the max function
in ReLU neurons and Max-pooling layers, whose details
are discussed in (Yang et al., 2021b). In brief, the vertex
adjacency can be efficiently deduced from the encoded facet-
vertex relation, which facilitates the update of reachable sets
in the max function.

With this representation, Veritex computes the exact output
reachable domain. Furthermore, the computation also tracks
the affine-mapping relation between an output reachable set
and its linear region. Therefore, Veritex can backtrack exact
unsafe input subspace that causes safety violation in the
output. This set representation can be only applied to simple
polytopes (Yang et al., 2021a). The common input interval
domain to a DNN is a simple polytope. Affine mapping does
not change this attribute. A reachable set computed from a
simple polytope in the max function is still a simple poly-
tope if none of its vertices lies in the boundary distinguishing
the linearities of this max function. In practice, this situa-
tion extremely unlikely happens because of floating-point
computation. Veritex can also detect this situation. In case,
Veritex implements another set representation, Face Lattice.

3.2.2. FACE LATTICE (FLATTICE)

Compared to FVIM, the face lattice structure encodes the
complete combinatorial structure of a polytope, describing
all the containment relation between different-dimensional
faces. Therefore, it is scalable to represent general poly-
topes. FLattice is also for the exact analysis of ReLU DNNs.
The affine-mapping operation on it is the same as FVIM.
Similarly, in the process of the max function, the vertex
adjacency also needs to be achieved for the reachable-set up-
date. Since FLattice has more face-containment relation to
process, its efficiency is slightly lower than FVIM. This set
representation also can backtrack exact unsafe input space
given an unsafe output domain, the same strategy as FVIM.
Overall, FLattice is compatible with the operations on FVIM
in the reachable-set computation, and it is a convenient and
effective alternative to address the issue in FVIM.

3.2.3. V−ZONO

V-zono is an enhanced vertex-representation of zonotope,
which is used to construct the over-approximated reachable
set in the linear relaxation of activation functions, such as
ReLU, Sigmoid and Tanh. This zonotope-based reachability
method computes the over-approximated output reachable
domain of a DNN and can be used for sound but incom-
plete safety verification. Since it does not consider different
linearities in the activation function, this method is faster
than the exact analysis. However, the approximation er-
ror is accumulated with respect to each neuron, which can
yield a conservative approximation. Normally, this method
is used for safety verification with small input domains.
Veritex also combines the exact analysis with this method
in the safety verification and the computation of unsafe
input-output reachable domain of DNNs. Because the over
approximation method can quickly filter out spaces that
does not contain unsafe elements in the beginning of its
computation and significantly improve the computational
efficiency.

4. Evaluation
4.1. Safety Verification of ACAS Xu Networks

The performance of Veritex on the safety verification of
45 ACAS Xu networks is compared to the standardized
competition results in VNN-COMP’21 (Bak et al., 2021),
where most of the state-of-art methods participated. All
13 methods and tools that participated are considered in
the comparison. Our hardware configuration is set to the
standard configuration, AWS, CPU: r5.12×large, 48vCPUs,
384 GB memory.

Veritex combines the exact analysis and the over-
approximation analysis for a fast, sound and complete veri-
fication. The verification time of all 186 instances of each

Submission and Formatting Instructions for WFVML 2022

Figure 2. Cactus plot of the running time of the safety verification
for ACAS Xu from VNN-COMP’21. The running time of failed
instances which return ’unknown’ or ’timeout’ is not included.
Timeout is 116 seconds. Compared to all the related works, Veritex
exhibits the highest efficiency.

method is shown in the cactus-plot Fig. 2. We can notice
that compared to those 13 methods, Veritex can complete
all the verification within the 116-second timeout and ex-
hibits the highest efficiency. There are 10 methods that are
over-approximation based fail to verify all the instances due
to their conservativeness. There are 3 methods that can
also verify all the instances within the timeout, and they are
α-β-CROWN (cro), nnenum (Bak, 2021) and VeriNet (Hen-
riksen & Lomuscio, 2020). In terms of the total running
time, Veritex is 16.8× faster, 1.8× faster, and 5.0× faster
than these 3 methods, respectively. This is because the set
representation in Veritex contains vertices of reachable sets,
and thus can avoid LP problems that commonly exists in
these related works. The other reason is that the incorpora-
tion of the over-approximation analysis can quickly filter out
safe subspaces in the input domain and thus avoid further
computation on them.

4.2. Repair of Unsafe ACAS Xu Networks and Unsafe
DNN Agents

Among those 45 networks, there are 35 unsafe networks
violating at least one of their safety properties. Their original
dataset is not publicly available. Therefore, a set of 5k test
data is sampled from each original network for the accuracy
analysis of their repaired network, on which the accuracy of
these original networks is 100%. Here, the accuracy refers
to the ratio of correct predictions on the test data. In this
case study, we apply the non-minimal repair and compare
Veritex to ART which is a well-known repair method for
DNNs.

The result of the ACAS Xu network repair is shown in Ta-

Table 2. Repair of ACAS Xu neural network controllers. Veritex
successfully repairs all 35 unsafe networks with little accuracy
degradation.

Methods Repair
Successes

Minimal
Accuracy

Mean
Accuracy

Maximal
Accuracy

Veritex 35/35 98.74% 99.70% 100.0%
Art 34/35 89.08% 94.57% 98.06%

Art-refinement 35/35 88.82% 95.85% 98.64%

Table 3. Running time (sec) of Veritex and ART. Veritex shows a
higher efficiency than ART-refinement in most of the instances.

Methods Minimal
Time

Mean
Time

Maximal
Time Time (N19) Time (N29)

Veritex 8.4 77.7 230.2 11250.7 2484.1
Art 63.6 64.6 91.7 67.5 72.6

Art-refinement 83.4 86.0 124.3 82.5 88.4

ble 2. We can notice that Veritex can repair all the 35 unsafe
networks. ART can repair 34 networks, and ART-refinement
which is an improved version of ART can also repair all the
networks. In terms of accuracy, our repaired networks ex-
hibit a much higher accuracy than ART and ART-refinement.
Some of our repaired networks even have 100% accuracy,
showing much less performance degradation.

Besides the accuracy, we also analyze the reachability
change of repaired networks, because the reachability of a
network comprehensively reflect its behaviors. A desired
repair should fix all safety violations of a network and mean-
while preserve its safe behaviors. Here, we apply Veritex to
plot the output reachable domain of the original and repaired
network N21 on their safety properties, and then analyze
their difference. Network N21 has safety properties 1, 2, 3, 4
and it violates the property 2. The output reachable domain
of the original network, Veritex-repaired network and ART-
refinement-repaired network on the property 1&2 is shown
in (a), (b) and (c) in Fig. 3. Their output reachable domains
on the property 3&4 are shown in (d), (e) and (f). All do-
mains are projected on (y0, y1) for visualization. The unsafe
reachable domain is plotted in red. We can notice that the
unsafe reachable domain on the property 2 is eliminated
after the repair by Veritex and ART. We can also notice that
compared to ART, Veritex modifies the reachability less.
This is also shown by the reachability on the property 3&4
in (d), (e) and (f).

The running time of Veritex and ART is shown in Table 3.
The repair of N19 and N29 by Veritex takes more time than
ART. This is because that the exact reachability analysis
of networks is an NP-complete problem (Katz et al., 2017).
The safety properties of these 2 networks specify very large
input domains, therefore, their analysis is more computa-

Submission and Formatting Instructions for WFVML 2022

(a) Unsafe Network (b) Our Repair (c) ART Repair

(d) Unsafe Network (e) Our Repair (f) ART Repair

Figure 3. Reachability of the original network and the repaired
networks on Properties 1&2 (a,b,c), 3&4 (d,e,f). The output reach-
able domains are projected on (y0, y1). Red area represents the
unsafe reachable domain. When projected on the lower dimen-
sional space, the unsafe reachable domain overlaps with the safe
reachable domain, as shown in (a). The unsafe reachable domain
is eliminated by Veritex, but the safe reachable domain is barely
changed, as shown in (b).

tional expensive. For the repair of the other 33 networks,
Veritex is faster than ART-refinement.

The other case study is repairing an unsafe DNN agent for a
rocket-lander system in DRL (roc). This agent has 9 state
inputs, 5 hidden layers with each containing 20 ReLU neu-
rons, and 3 outputs with a continuous action space. More
details can be found in (Yang et al., 2022). The repair by
Veritex takes 304.9 seconds to produce a provable safe agent.
The reachability of the original agent and our repaired agent
is shown in Fig. 4. Similar to the ACAS Xu network repair,
Veritex repairs this unsafe agent without heavily affecting
its original reachability. Overall, we can conclude that Veri-
tex can efficiently repair unsafe DNNs on multiple safety
properties with trivial impact on the original performance.

5. Conclusion
This paper presents a toolbox Veritex which provides a col-
lection of algorithms for the reachability analysis and repair
of DNNs. It contains three different set representations for
the reachable-set computation. Its reachability analysis can
be used for a sound and complete safety verification. Its
high efficiency is demonstrated in the ACAS Xu benchmark.
The analysis can also be used to compute the exact unsafe
input-output reachable domain of DNNs for their repair.
The repair algorithm supports the minimal repair and the
non-minimal repair. Given an unsafe DNN, it can produce a
provable safe version only with slight impacts on the origi-

(a) Unsafe Agent (b) Our Repair

(c) Unsafe Agent (d) Our Repair

Figure 4. Reachability of the original agent and the repaired agent
on Properties 1 & 2. The output reachable domains are projected
on (y0, y1) and (y0, y2). Red area represents the unsafe reachable
domain.

nal DNN. Its utility is demonstrated in the repair of unsafe
ACAS Xu networks and an unsafe agent in DRL.

Acknowledgements
The material presented in this paper is based upon work sup-
ported by the National Science Foundation (NSF) through
grant numbers 1910017, 1918450, and 2028001, the De-
fense Advanced Research Projects Agency (DARPA) under
contract number FA8750-18-C-0089, and the Air Force Of-
fice of Scientific Research (AFOSR) under contract number
FA9550-22-1-0019. Any opinions, findings, and conclu-
sions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of
AFOSR, DARPA, or NSF.

References
alpha-beta-crown. https://github.com/huanzhang12/alpha-

beta-CROWN.git.

Eran. https://github.com/eth-sri/eran.git.

Rocket-lander system. https://github.com/arex18/rocket-
lander.git.

Verinet. https://github.com/vas-group-imperial/VeriNet.git.

Bak, S. nnenum: Verification of relu neural networks with
optimized abstraction refinement. In NASA Formal Meth-
ods Symposium, pp. 19–36. Springer, 2021.

Submission and Formatting Instructions for WFVML 2022

Bak, S., Liu, C., and Johnson, T. The second interna-
tional verification of neural networks competition (vnn-
comp 2021): Summary and results. arXiv preprint
arXiv:2109.00498, 2021.

Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., and
Misener, R. Efficient verification of relu-based neural
networks via dependency analysis. In AAAI, pp. 3291–
3299, 2020.

Dutta, S., Jha, S., Sankaranarayanan, S., and Tiwari, A.
Output range analysis for deep feedforward neural net-
works. In NASA Formal Methods Symposium, pp. 121–
138. Springer, 2018.

Henriksen, P. and Lomuscio, A. Efficient neural network ver-
ification via adaptive refinement and adversarial search.
In ECAI 2020, pp. 2513–2520. IOS Press, 2020.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient smt solver for verifying
deep neural networks. In International Conference on
Computer Aided Verification, pp. 97–117. Springer, 2017.

Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C.,
Lim, R., Shah, P., Thakoor, S., Wu, H., Zeljić, A., et al.
The marabou framework for verification and analysis
of deep neural networks. In International Conference
on Computer Aided Verification, pp. 443–452. Springer,
2019.

Shriver, D., Elbaum, S., and Dwyer, M. B. Dnnv: A frame-
work for deep neural network verification. In Silva, A.
and Leino, K. R. M. (eds.), Computer Aided Verifica-
tion, pp. 137–150, Cham, 2021. Springer International
Publishing. ISBN 978-3-030-81685-8.

Singh, G., Gehr, T., Püschel, M., and Vechev, M. An abstract
domain for certifying neural networks. Proceedings of the
ACM on Programming Languages, 3(POPL):41, 2019.

Sotoudeh, M. and Thakur, A. V. Syrenn: A tool for analyz-
ing deep neural networks. Tools and Algorithms for the
Construction and Analysis of Systems, 12652:281, 2021.

Tran, H.-D., Musau, P., Lopez, D. M., Yang, X., Nguyen,
L. V., Xiang, W., and Johnson, T. T. Star-based reach-
ability analsysis for deep neural networks. In 23rd In-
ternational Symposisum on Formal Methods (FM’19).
Springer International Publishing, October 2019.

Tran, H.-D., Yang, X., Lopez, D. M., Musau, P., Nguyen,
L. V., Xiang, W., Bak, S., and Johnson, T. T. Nnv: The
neural network verification tool for deep neural networks
and learning-enabled cyber-physical systems. In Inter-
national Conference on Computer Aided Verification, pp.
3–17. Springer, 2020.

Wang, Z., Albarghouthi, A., and Jha, S. Abstract universal
approximation for neural networks. arXiv e-prints, pp.
arXiv–2007, 2020.

Yang, X., Johnson, T. T., Tran, H.-D., Yamaguchi, T.,
Hoxha, B., and Prokhorov, D. Reachability analysis
of deep relu neural networks using facet-vertex inci-
dence. In Proceedings of the 24th International Con-
ference on Hybrid Systems: Computation and Con-
trol, HSCC ’21, New York, NY, USA, 2021a. Associ-
ation for Computing Machinery. ISBN 9781450383394.
doi: 10.1145/3447928.3456650. URL https://doi.
org/10.1145/3447928.3456650.

Yang, X., Yamaguchi, T., Tran, H.-D., Hoxha, B., Johnson,
T. T., and Prokhorov, D. Reachability analysis of convolu-
tional neural networks. arXiv preprint arXiv:2106.12074,
2021b.

Yang, X., Yamaguchi, T., Tran, H.-D., Hoxha, B., Johnson,
T., and Prokhorov, D. Neural network repair with reach-
ability analysis. In International Conference on Formal
Modeling and Analysis of Timed Systems. Springer, 2022.

https://doi.org/10.1145/3447928.3456650
https://doi.org/10.1145/3447928.3456650

