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Abstract
We consider the problem of whether a Neural Net-
work (NN) model satisfies global individual fair-
ness. Individual Fairness (defined in (Dwork et al.,
2012)) suggests that similar individuals with re-
spect to a certain task are to be treated similarly
by the decision model. In this work, we have two
main objectives. The first is to construct a verifier
which checks whether the fairness property holds
for a given NN in a classification task or provide
a counterexample if it is violated, i.e., the model
is fair if all similar individuals are classified the
same, and unfair if a pair of similar individuals
are classified differently. To that end, We con-
struct a sound and complete verifier that verifies
global individual fairness properties of ReLU NN
classifiers using distance-based similarity metrics.
The second objective of this paper is to provide a
method for training provably fair NN classifiers
from unfair (biased) data. We propose a fairness
loss that can be used during training to enforce
fair outcomes for similar individuals. We then
provide provable bounds on the fairness of the
resulting NN. We run experiments on commonly
used fairness datasets that are publicly available
and we show that global individual fairness can
be improved by 96 % without significant drop in
test accuracy.

1. Introduction
Neural Networks (NNs) have become an increasingly cen-
tral component of modern decision-making systems, in-
cluding those that are used in sensitive/legal domains such
as crime prediction (Brennan et al., 2009), credit assess-
ment (Dua & Graff, 2017), income prediction (Dua & Graff,
2017), and hiring decisions. However, studies have shown
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that these systems are prone to biases (Mehrabi et al., 2021b)
that deem their usage unfair to unprivileged users based on
their age, race, or gender. The bias is usually either inherent
in the training data or introduced during the training process.
Mitigating algorithmic bias has been studied in the literature
(Zhang et al., 2018; Xu et al., 2018; Mehrabi et al., 2021a)
in the context of group and individual fairness. However,
the fairness of the NN is considered only empirically on the
test data with the hope that it represents the underlying data
distribution.

Unlike the empirical techniques for fairness, we are inter-
ested to provide provable certificates regarding the fairness
of a NN classifier. In particular, we focus on the “global
individual fairness” property which states that a NN clas-
sification model is globally individually fair if all similar
pairs of inputs x, x′ are assigned the same class. We use
a feature-wise closeness metric instead of an ℓp norm to
evaluate similarity between individuals, i.e, a pair x, x′ is
similar if for all features i, |xi−x′

i| ≤ δi. Given this fairness
notion, the objective of this paper is twofold. First, it aims
to provide a sound and complete formal verification frame-
work that can automatically certify whether a NN satisfy
the fairness property or produce a concrete counterexample
showing two inputs that are not treated fairly by the NN.
Second, this paper provides a training procedure for certified
fair training of NNs even when the training data is biased.

Challenge: Several existing techniques focus on gener-
alizing ideas from adversarial robustness to reason about
NN fairness (Yurochkin et al., 2019; Ruoss et al., 2020).
By viewing unfairness as an adversarial noise that can flip
the output of a classifier, these techniques can certify the
fairness of a NN locally, i.e., in the neighborhood of a given
individual input. In contrast, this paper focuses on global
fairness properties where the goal is to ensure that the NN
is fair with respect to all the similar inputs in its domain.
Such a fundamental difference precludes the use of existing
techniques from the literature on adversarial robustness and
calls for novel techniques that can provide provable fairness
guarantees.

This work: We introduce CertiFair, a framework for cer-
tified global fairness of NNs. This framework consists of
two components. First, a verifier that can prove whether
the NN satisfies the fairness property or produce a concrete
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counterexample that violates the fairness property. This
verifier is motivated by the recent results in the “relational
verification” problem (Barthe et al., 2011) where the goal
is to verify hyperproperties that are defined over pairs of
program traces. Our approach is based on the observation
that the global individual fairness property (1) can be seen
as a hyperproperty and hence we can generalize the concept
of product programs to product NNs that accepts a pair of
inputs (x, x′), instead of a single input x, and generates
two independent outputs for each input. A global fairness
property for this product NN can then be verified using ex-
isting NN verifiers. Moreover, and inspired by methods in
certified robustness, we also propose a training procedure
for certified fairness of NNs. Thanks again to the product
NN, mentioned above, one can establish upper bounds on
fairness and use it as a regularizer during the training of
NNs. Such a regularizer will promote the fairness of the
resulting model, even if the data used for training is biased
and can lead to an unfair classifier. While such fairness reg-
ularizer will enhance the fairness of the model, one needs
to check if the fairness property holds globally using the
sound and complete verifier mentioned above.

Contributions: Our main contributions are:

• To the best of our knowledge, we present the first sound
and complete NN verifier for global individual fairness
properties.

• A method for training NN classifiers with a modified
loss that enforces fair outcomes for similar individu-
als. We provide bounds on the loss in fairness which
constructs a certificate on the fairness of the trained
NN.

• We applied our framework to common fairness datasets
and we show that global fairness can be achieved with
a minimal loss in performance.

2. Preliminaries
Our framework supports regression and multi-class classifi-
cation models, however for simplicity, we only present our
framework for binary classification models h : Rn → {0, 1}
of the form h(x) = t(fθ(x)) where t is a threshold function
with threshold equals to 0.5. Moreover, we assume fθ is an
L-layer NN with ReLU hidden activations and parameters
θ = ((W1, b1), . . . , (WL, bL)) where (Wi, bi) denotes the
weights and bias of the ith layer. We also assume the acti-
vation function of the last layer of fθ is a sigmoid function.
The NN accepts an input vector x where the components
xi ∈ R (the set of real numbers) or xi ∈ Z (the set of inte-
ger numbers). This is suitable for most of the datasets where
some features of the input are numerical while others are

categorical. In this paper, we are interested in the following
fairness property:
Definition 2.1 (Global Individual Fairness (Dwork et al.,
2012; John et al., 2020)). A model fθ(x) is said to satisfy
the global individual fairness property ϕ if the following
holds:

∀x, x′ ∈ Dϕ s.t. d(x, x′) = 1 =⇒ h(fθ(x)) = h(fθ(x
′)), (1)

where d : Rn × Rn → {1, 0} is a similarity metric that
evaluates to 1 when x and x′ are similar and Dϕ is the input
domain of x for property ϕ defined as Dϕ := D0

ϕ × ... ×
Dn−1

ϕ with Di
ϕ := {xi | li ≤ xi ≤ ui} for some bounds li

and ui.

In this paper, we utilize the feature-wise similarity metric d
defined as:

d(x, x′) =

{
1 if |xi − x′

i| ≤ δi ∀i ∈ {1, . . . n}
0 otherwise

(2)

This feature-wise similarity metric allows the fairness prop-
erty ϕ in (1) to capture several other fairness properties as
special cases as follows:
Definition 2.2 (Individual discrimination (Aggarwal et al.,
2019)). A model fθ(x) is said to be nondiscriminatory be-
tween individuals if the following holds:

∀x = (xs, xns), x
′ = (x′

s, x
′
ns) ∈ Dϕ

s.t. xns = x′
ns and xs ̸= x′

s =⇒ h(fθ(x)) = h(fθ(x
′)),

where xs and xns denotes the sensitive attributes and non-
sensitive attributes of x, respectively.

Indeed, the individual discrimination corresponds to a global
individual fairness property by setting δi = 0 in (2) for
the non-sensitive attributes. Another definition of fair-
ness(Ruoss et al., 2020) states that two individuals are sim-
ilar if their numerical features differ by no more than α.
Again, this can be represented by the closeness metric sim-
ply by setting δi = 0 for categorical attributes and δi = α
for numerical attributes.

Based on Definition 1 above, we can formally verify whether
the fairness property ϕ holds by checking if the set of coun-
terexamples (or violations) C is empty, where C is defined
as:

C =

{
(x, x′)

∣∣∣x, x′ ∈ Dϕ,
n−1∧
i=0

|xi − x′
i| < δi, h(x) ̸= h(x′)

}
= ∅. (3)

3. Global Individual Fairness as a
hyperproperty

In this section, we draw the connection between the veri-
fication of global individual fairness properties (1) and hy-
perproperties in the context of program verification. On the
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Figure 1: Construction of the Product NN.

one hand, several local properties of NNs (e.g., adversarial
robustness) are considered trace properties, i.e., properties
defined on the input-output behavior of the NN. In this case,
one can search the input space of the NN to find a single
input (or counterexample) that leads to an output that vio-
lates the property. In the domain of adversarial robustness,
a counterexample corresponds to a disturbance to an input
that can change the classification output of a NN. On the
other hand, other properties, like the global fairness prop-
erties, can not be modeled as trace properties. This stems
from the fact that one can not judge the correctness of the
NN by considering individual inputs to the NN. Instead,
finding a counterexample to the fairness property will entail
searching over pairs of inputs and comparing the NN out-
puts of these inputs. Properties that require examining pairs
or sets of traces (input-outputs of a program) are defined as
hyperproperties (Barthe et al., 2011).

Modeling global individual fairness as a hyperproperty leads
to a direct certification framework. In particular, a key idea
in the hyperproperty verification literature is the notion of
a product program that allows the reduction of the hyper-
property verification problem to a standard verification prob-
lem (Barthe et al., 2011). A product program is constructed
by composing two copies of the original program together.
The main benefit is that the hyperproperties of the original
program become trace properties of the product program
that can be verified using standard techniques. Motivated by
this observation, our framework CertiFair generalizes the
concept of product programs into product NNs (described
in detail in Section 4.2 and shown in Figure 1) that accepts
a pair of inputs and generates a pair of two independent
outputs. We then use the product network to verify fairness
(hyper)properties using standard techniques.

4. CertiFair: A Framework for Certified
Fairness of Neural Networks

As mentioned earlier in section 3, the fairness property
can be viewed as a hyperproperty of the NN. We propose
the use of a product NN that can reduce the verification
of such hyperproperty into standard trace (input/output)
property. In this section, we first explain how to construct

the product NN followed by how to use it to encode the
fairness verification problem into ones that are accepted by
off-the-shelf NN verifiers. Next, we discuss how to use this
product NN to derive a fairness regualrizer that can be used
during training to obtain a certified fair NN.

4.1. Product Neural Network

Given a neural network fθ, the product network fθp is ba-
sically a side-to-side composition of fθ with itself. More
formally, the parameters vector θp of the product NN is
defined as:

θp =

(([
W1 0
0 W1

]
,

[
b1
b1

])
, . . . ,

([
WL 0
0 WL

]
,

[
bL
bL

]))
where (Wi, bi) are the weights and biases of the ith layer
of fθ. The input to the product network fθp is a pair of
concatenated inputs xp = (x, x′). Finally, we add an out-
put layer that results in an output hp ∈ {0, 1} defined as:
hp(fθp(xp)) = |h(fθ(x))− h(fθ(x

′))| where the absolute
value operator |.| can be implemented using ReLU nodes
by noticing that |a| = max(a, 0) +max(−a, 0). Figure 1
summarizes this construction.

4.2. Fairness Verification

Using the product network defined above, we can rewrite
the set of counterexamples C in (3) as:

Cp =

{
xp

∣∣∣xp ∈ Dϕ ×Dϕ,
n−1∧
i=0

|xi − x′
i| < δi, hp(xp) > 0

}
(4)

which corresponds to the standard verification of NN input-
output properties (Liu et al., 2019), albeit being defined over
the product network inputs and outputs..

To check the emptiness of the set Cp in (4) (and hence certify
the global individual fairness property), we need to search
the space Dϕ ×Dϕ to find at least one counterexample that
violates the fairness property, i.e., a pair xp = (x, x′) that
represent similar individuals who are classified differently
by the NN. Finding such a counterexample is, in general,
NP-hard due to the non-convexity of the ReLU NN fθp . To
that end, we use PeregriNN (Khedr et al., 2021) as our NN
verifier. Briefly, PeregriNN overapproximates the highly
non-convex NN with a linear convex relaxation for each
ReLU activation. This is done by introducing two optimiza-
tion variables for each ReLU, a pre-activation variable ŷ and
a post-activation variable y. The non-convex ReLU func-
tion can then be overapproximated by a triangular region
of three constraints; y ≥ 0, y ≥ ŷ, and y ≤ u

u−l (ŷ − l),
where l,u are the lower and upper bounds of ŷ respectively.
The solver tries to check whether the approximate problem
has no solution or iteratively refine the NN approximation
until a counterexample that violates the fairness constraint
is found. PeregriNN employs other optimizations in the
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objective function to guide the refinement of the NN ap-
proximation but the details of these methods are beyond the
scope of this paper. We refer the reader to the original paper
(Khedr et al., 2021) for more details on the internals of the
solver.

Proposition 4.1. Consider a NN model fθ and a fairness
property ϕ—either representing a Global Individual Fair-
ness property (Definition 2.1) or an Individual Discrimi-
nation property (Definition 2.2). Consider a set of coun-
terexamples Cp computed using a NN verifier applied to
the product network fθp . The NN satisfies the property ϕ
whenever the set Cp is empty.

Proof. This result follows directly from the equivalence
between the sets C in (3) and Cp in (4) along with the NN
verifiers (like PeregriNN) being sound and complete and
hence capable of finding any counterexample, if one exists.

4.3. Certified Fair Training

In this section, we formalize a fairness regularizer that can
be used to train certified fair models. In particular, we pro-
pose two fairness regularizers that correspond to local and
global individual fairness. We provide the formal definitions
of both these regularizers below and their characteristics.

Local Fairness Regularizer Ll
f using Robustness around

Training Data: Our first proposed regularizer is moti-
vated by the robustness regularizers used in the literature
of certified robustness (Wong & Kolter, 2017; Zhang et al.,
2019). The regualrizer, denoted by Ll

f , aims to minimize
the average loss in fairness across all training data. More for-
mally, given a training point (x, y) and NN parameters θ, let
L(fθ(x), y; θ) = −[y log(fθ(x))+ (1− y) log(1− fθ(x))]
be the standard binary cross-entropy loss. The fairness regu-
larizer Ll

f can then be defined as:

Ll
f (θ) = E

(x,y)∈(X,y)

 max
x′∈Dϕ

d(x,x′)=1

L(fθ(x′), y; θ)

 (5)

In other words, the regularizer above aims to measure the
expected value (across the training data) for the worst-case
loss of fairness due to points x′ that are assigned to different
classes. Indeed, the regualrizer (5) is not differentiable (with
respect to the weights θ) due to the existence of the max
operator. Nevertheless, one can compute an upper bound
of (5) and aims to minimize this upper bound instead. Such

upper bound can be derived as follows:

max
x′∈Dϕ

d(x,x′)=1

L(fθ(x′), y; θ) = max
x′∈Dϕ

d(x,x′)=1

{
− log(1− fθ(x

′)) if y=0

− log(fθ(x
′)) if y=1

≤

{
− log(1− θTwSϕ(x)) if y=0

− log(θTwSϕ(x)
) if y=1

(6)

where θTwSϕ(x) and θTwSϕ
are the linear upper/lower

bound of fθ(x
′) inside the set Sϕ(x) = {x′ ∈

Dϕ|d(x, x′) = 1}. Such linear upper/lower bound of fθ(x′)
can be computed using off-the-shelf bounding techniques
like Symbolic Interval Analysis (Wang et al., 2018a) and
α-Crown (Xu et al., 2020). We denote by L(y; θ) the right
hand side of the inequality in (6) which depends only on the
label y and the NN parameters θ. Now the fairness property
can be incorporated in training by optimizing the following
problem over θ (the NN parameters):

minθ E(x,y)∈(X,y)

(1− λf )L(fθ(x), y; θ)︸ ︷︷ ︸
natural loss

+λf L(y; θ)︸ ︷︷ ︸
local

fairness loss

 , (7)

where λf is a regularization parameter to control the trade-
off between fairness and accuracy.

Although easy to compute and incorporate in training, the
regularizer Ll

f (θ) (and its upper bound) defined above suf-
fers from a significant drawback. It focuses on the fairness
around the samples presented in the training data. In other
words, although the aim was to promote global fairness,
this regularizer is effectively penalizing the training only in
the local neighborhood of the training data. Therefore, its
effectiveness depends greatly on the quality of the training
data and its distribution. Poor data distribution may lead
to the poor effect of this regularizer. Next, we introduce
another regularizer that avoids such problems.

Global Fairness Regularizer Lg
f using Product Network:

To avoid the dependency on data, we introduce a novel
fairness regularizer capable of capturing global fairness
during the training. Such a regularizer is made possible
thanks to the product NN defined above. In particular, the
global fairness regularizer Lg

f (θ) is defined as:

Lg
f (θ) = max

(x,x′)∈Dϕ×Dϕ

d(x,x′)=1

|fθ(x)− fθ(x
′)| (8)

In other words, the regualizer Lg
f (θ) in (8) aims to penalize

the worst case loss in global fairness. Similar to (5), the
Lg
f (θ) is also non-differentiable with respect to θ. Never-

theless, and thanks to the product NN, we can upper bound
Lg
f (θ) as:

Lg
f (θ) ≤ max

(x,x′)∈Dϕ×Dϕ

|fθ(x)− fθ(x
′)|

= max
xp∈Dϕ×Dϕ

fp(xp) ≤ θTwDϕ

(9)
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where θTwDϕ
is the linear upper bound of the product net-

work among the domain Dϕ × Dϕ. Again, such bound
can be computed using Symbolic Interval Analysis and α-
Crown on the product network after replacing the output
hp with fp = |fθ(x)− fθ(x

′)|. It is crucial to note that the
upper bound in (9) depends only on the domain Dϕ. Hence,
the fairness property can now be incorporated into training
by minimizing this upper bound as:

min
θ

E
(x,y)∈(X,y)

(1− λf )L(fθ(x), y; θ)︸ ︷︷ ︸
natural

loss

+ λf θTwDϕ︸ ︷︷ ︸
global

fairness loss

,

(10)

where the fairness loss is now outside the E[ . ] operator.

In the next section, we show that the global fairness reg-
ularizer Lg

f (θ) empirically outperforms the local fairness
regularizer Ll

f (θ). We end up our discussion in this section
with the following result:

Proposition 4.2. Consider a NN model fθ and a fairness
property ϕ—either representing a Global Individual Fair-
ness property (Definition 2.1) or an Individual Discrimi-
nation property (Definition 2.2). Consider a NN model fθ
trained using the objective function in (10). If θTwDϕ

= 0
by the end of the training, then the resulting fθ is guaranteed
to satisfy ϕ.

Proof. The result follows directly from equation (9).

Indeed, the result above is just a sufficient condition. In
other words, the NN may still satisfy the fairness property ϕ
even if θTwDϕ

> 0. Such cases can be handled by applying
the verification procedure in Section 4.2 after training the
NN.

5. Experimental evaluation
We present an experimental evaluation to study the effect of
our proposed fairness regularizers and hyperparameters on
the global fairness. We evaluated CertiFair on four widely
investigated fairness datasets (Adult (Dua & Graff, 2017),
German (Dua & Graff, 2017), Compas (Angwin et al., 2016),
and Law School (Wightman, 1998)). All datasets were pre-
processed such that any missing rows or columns were
dropped, features were scaled so that they’re between [0, 1],
and categorical features were one-hot encoded.

Implementation: We implemented our framework in a
Python tool called CertiFair that can be used for training
and verification of NNs against an individual fairness prop-
erty. CertiFair uses Pytorch (Paszke et al., 2019) for all NN
training and a publicly available implementation of Pere-
griNN (Khedr et al., 2021) as a NN verifier. We run all our

Table 1: Comparison between local and global fairness on
the Adult dataset for different similarity constraint (distance
δi). The training was done using the local fairness regular-
izer.

δi Certified Certified
local global

fairness fairness
(%) (%)

0.02 89.25 6.56
0.03 100.00 65.98
0.05 81.42 6.40
0.07 100.00 57.39
0.1 99.95 66.35

experiments using a single GeForce RTX 2080 Ti GPU and
two 24-core Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
(only 8 cores were used for these experiments).

Measuring global fairness using verification: While the
verifier (described in Section 4.2) is capable of finding con-
crete counterexamples that violate the fairness, it is also
important to quantify a bound on the fairness. In these ex-
periments, the certified global fairness is quantified as the
percentage of partitions of the input space with zero coun-
terexamples. In particular, the input space is partitioned
using the categorical features, i.e., the number of partitions
is equal to the number of different categorical assignments
and each partition corresponds to one categorical assign-
ment. Note that the numerical features don’t have to be
fixed inside each partition (property dependant). To verify
the property globally, we run the verifier on each partition
of the input space and verify the fairness property. Finally,
we count the number of verified fair partitions (normalized
by the total number of partitions). We’d like to note that
partitioning the input space can be a bottle-neck for verifi-
cation for large domains. In that case, categorical variables
can be approximated by a numerical range. However, this
will limit the ability to quantify the global fairness, because
the verifier will either prove fairness for the whole input
domain or find a counterexample (i.e. binary result instead
of a percentage).

Fairness properties: In the experimental evaluation, we
consider two classes of fairness properties. The first class
P1 is the one in definition 2.2 where two individuals are
similar if they only differ in their sensitive attribute. The
second class of properties P2 relaxes the first by also allow-
ing numerical attributes to be close (not identical), this is
allowed under definition 2.1 of global individual fairness
by setting δi > 0 for numerical attributes. Complete for-
mal definitions of all the properties for the four datasets is
provided in Appendix B.
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5.1. Experiment 1: Global Individual Fairness vs. Local
Individual Fairness

In this experiment, we empirically show that NNs with high
local individual fairness does not necessarily result into
NNs with global individual fairness. In particular, we train
multiple different NNs on the Adult dataset and consid-
ered multiple fairness properties (all from class P2 defined
above) by varying δi. Note that δi is equal for all features
i within the same property, but is different from one prop-
erty to another. Next, we use PeregeriNN verifier to find
counterexamples for both the local fairness (by applying
the verifier to the trained NN) and the global fairness (by
applying the verifier to the product NN). We measure the
fairness of the NN for both cases and report the results in
Table 1. The results indicate that verifying local fairness
may result in incorrect conclusions about the fairness of the
model. In particular, rows 2 and 4 in the table show that
counterexamples were not found in the neighborhood of the
training data (reflected by the 100% certified local fairness),
yet verifying the product NN was capable of finding coun-
terexamples that are far from the training data leading to
accurate conclusions about the NN fairness.

5.2. Experiment 2: Effects of Incorporating the Fairness
Regularizer

We investigate the effect of using the global fairness regu-
larizer (defined in (9)) on the decisions of the NN classifier
when trained on the Adult dataset. The fairness property
for this experiment is of class P1. To investigate the predic-
tor’s bias, we first project the data points on two numerical
features (age and hours/week). Our objective is to check
whether the points that are classified positively for the priv-
ileged group are also classified positively for the non priv-
ileged group. Figure 2 (left) shows the predictions for the
unprivileged group when using the base classifier (λf = 0).
Green markers indicate points for which individuals from
both privileged and non privileged groups are treated equally
(we denote this as Classified positive) while red markers
show individuals from the non privileged group that did not
receive the same NN output compared to the correspond-
ing identical ones in the privileged group (we denote this
as Classified negative). Figure 2 (right) shows the same
predictions but using the fair classifier (λf = 0.03), the
predictions from this classifier drastically decreased the dis-
crimination between the two groups while only decreasing
the accuracy by 2%. These results suggest that we can in-
deed regularize the training to improve the satisfaction of the
fairness constraint without a drastic change in performance.

We also investigate how the certified fairness changes across
epochs of training. To that end, we train a NN for the
Adult dataset and evaluate the test accuracy as well as the
certified global fairness after each epoch of training for two

different values of λf . Figure 3 shows the underlying trade-
off between achieving fairness versus maximizing accuracy.
As expected, lower values of λf results in lower loss in
accuracy (compared to the base case with λf = 0) while
having lower effect on the fairness. The results also show
that a small sacrifice of the accuracy can lead to significant
enhancement of the fairness as shown for the λf = 0.007
case.

5.3. Experiment 3: Certified Fair Training

Experiment setup: The objective of this experiment is to
compare the two regularizers, the local fairness regularizer
in (6) and the global fairness regularizer in (9). To that end,
we performed a grid search over the learning rate α, the fair-
ness regularization parameter λf , and the NN architecture
to get the best test accuracy across all datasets. Best perfor-
mance was obtained with a NN that consists of two hidden
layers of 20 neurons (except for the German dataset, where
we use 30 neurons per layer), learning rate α = 0.001,
global fairness regularization parameter λf equal to 0.01 for
Adult and Law School, 0.005 for German, and 0.1 for Com-
pas dataset, and local fairness regularization parameter λf

equal to 0.95 for Adult, 0.9 for Compas, 0.2 for German, and
0.5 for Law School. We trained the models for 50 epochs
with a batch size of 256 (except for Law School, where
the batch size is set to 1024) and used Adam Optimizer for
learning the NN parameters θ. All the datasets were split
into 70% and 30% for training and testing, respectively.

Effect of the choice of the fairness regularizer: We inves-
tigate the certified global fairness for the two regularizers
introduced in Section 4.3. Table 2 summarizes the results
for P1 and P2 fairness properties (defined in details in Ap-
pendix B) across different datasets. For each property and
dataset, we compare the test accuracy, positivity rate (per-
centage of points classified as 1), and the certified global
fairness of the base classifier (trained with λf = 0) and the
CertiFair classifier trained twice with two different fairness
regularizers Ll

f and Lg
f . Compared to the base classifier,

training the NN with the global fairness regularizer Lg
f sig-

nificantly increases the certified global fairness with a small
drop in the accuracy in most of the cases except for the Law
School dataset, where the test accuracy dropped by 7 % on
P2 but the global fairness increased by 55 %. Compared
to the local regularizer Ll

f , the global regularizer achieves
higher global fairness and comparable (if not better) test ac-
curacy on all datasets except Law School. We think that this
might be due to the network’s limited capacity to optimize
both objectives. We also report the positivity rate (number
of data points classified positively) for the classifiers. This
metric is important because most of these datasets are un-
balanced, and hence the classifiers can trivially skew all the
classifications to a single label and achieve high fairness
percentage. Thus it is desired that the positivity rate of the
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Figure 2: Comparison between the base and CertiFair classifiers in terms of fairness as defined in 2.2. We show the
classifications for the minority group of the adult dataset projected on two features; Age, and hours worked per week. The
figure shows that the base classifier suffers from biases against identical individuals who are of different race (red markers).
CertiFair is able to drastically improve the individual fairness on this dataset with only 2% reduction in accuracy.

Figure 3: Test accuracy (left) and certified fairness (right) across training epochs when training a NN with the fairness
constraint (λf = 0.003, λf = 0.007) and without it (λf = 0) on the Adult dataset.

CertiFair classifier to be close to the one of the base clas-
sifier to ensure that it is not trivial. Lastly, we conclude
that even though the local regularizer improves the global
fairness, the global regularizer can achieve higher degrees
of certified global fairness without a significant decrease in
test accuracy, and of course, it avoids the drawbacks of the
local regularizer discussed in Section 4.3.

Effect of the fairness regularization parameter: In this
experiment, we investigate the effect of the fairness reg-
ularization parameter λf on the classifier’s accuracy and
fairness. The parameter λf controls the trade-off between
the accuracy of the classifier and its fairness, and tuning this
parameter is usually dependent on the network/dataset. To
that end, we trained a two-layer NN with 30 neurons per
layer for the German dataset using 8 different values for λf

and summarized the results in Table 3. The fairness prop-
erty verified is of class P2. The results show that the global
fairness satisfaction can increase without a significant drop
in accuracy up to a certain point, after which the fairness
loss is dominant and results in a significant decrease in the
classifier’s accuracy.

6. Related work
Group fairness: Group fairness considers notions like de-
mographic parity (Feldman et al., 2015), equality of odds,
and equality of opportunity (Hardt et al., 2016). Tools that
verify notions of group fairness assume knowledge of a
probabilistic model of the population. FairSquare (Albargh-
outhi et al., 2017) relies on numerical integration to formally
verify notions of group fairness; however, it does not scale
well for NNs. VeriFair (Bastani et al., 2019) considers prob-
abilistic verification using sampling and provides soundness
guarantees using concentration inequalities. This approach
is scalable to big networks, but it does not provide worst-
case proof.

Individual fairness: More related to our work is the verifi-
cation of individual fairness properties. LCIFR (Ruoss et al.,
2020) proposes a technique to learn fair representations that
are provably certified for a given individual. An encoder is
empirically trained to map similar individuals to be within
the neighborhood of the given individual and then apply NN
verification techniques to this neighborhood to certify fair-
ness. The property verified is a local property with respect
to the given individual. On the contrary, our work focuses
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Table 2: Comparison between a base classifier (λf = 0) and CertiFair classifier with different fairness regularizers

Constraint Dataset Test Accuracy (%) Positivity Rate(%)
Certified

Global Fairness (%)
Base Lg

f Ll
f Base Lg

f Ll
f Base Lg

f Ll
f

P2

Adult 84.55 82.34 83.81 20.8 17.4 21.79 6.40 100.00 61.92
German 75.30 73.00 70.00 79.00 72.00 83.00 8.64 95.06 86.41
Compas 68.30 65.08 63.19 61.55 66.00 69.40 11.14 100.00 100.00
Law 87.60 79.92 78.69 21.51 9.10 25.03 6.87 51.87 78.54

P1

Adult 84.55 82.33 83.25 20.80 18.13 20.15 1.77 97.86 95.31
German 75.30 72.66 69.66 79.00 83.14 81.71 14.81 92.59 82.71
Compas 68.30 65.08 63.82 61.55 66.00 71.60 47.22 100.00 100.00
Law 87.60 84.90 86.69 21.42 17.50 21.63 34.16 70.10 86.45

Table 3: Effect of fairness regularization parameter λf on
the test accuracy and certified fairness.

λf 1× 10−4 5× 10−4 7× 10−4 5× 10−3 7× 10−3 1× 10−2 2× 10−2 5× 10−2

Test accuracy (%) 74.33 74.33 75.00 72.33 72.66 73.00 72.6 66.33
Certified global fairness (%) 8.64 14.81 13.58 66.66 82.71 95.06 98.76 100

on the global fairness properties of a NN. It also avoids the
empirical training of similarity maps to avoid affecting the
soundness and completeness of the proposed framework.
In the context of individual global fairness, a recent work
(John et al., 2020) proposed a sound but incomplete verifier
for linear and kernelized polynomial/radial basis function
classifiers. It also proposed a meta-algorithm for the global
individual fairness verification problem; however, it is not
clear how it can be used to design sound and complete NN
verifiers for the fairness properties. Another line of work
(Urban et al., 2020) focuses on proving dependency fairness
properties which is a more restrictive definition of fairness
since it requires the NN outputs to avoid any dependence
on the sensitive attributes. The method employs forward
and backward static analysis and input space partitioning to
verify the fairness property. As mentioned, this definition
of fairness is different from the individual fairness we are
considering in this work and is more restrictive.

NN verification: This work is algorithmically related to
NN verification in the context of adversarial robustness.
However, adversarial robustness is a local property of the
network given a nominal input, and a norm bounded pertur-
bation. Moreover, the robustness property does not consider
the notion of sensitive attributes. The NN verification liter-
ature is extensive, and the approaches can be grouped into
four main groups: (i) SMT-based methods, which encode
the problem into a Satisfiability Modulo Theory problem
(Katz et al., 2019; 2017; Ehlers, 2017); (ii) MILP-based
solvers, which solves the verification problem exactly by
encoding it as a Mixed Integer Linear Program (Lomuscio
& Maganti, 2017; Tjeng et al., 2017; Bastani et al., 2016;
Bunel et al., 2020; Fischetti & Jo, 2018; Anderson et al.,

2020; Cheng et al., 2017); (iii) Reachability based methods
(Xiang et al., 2017; 2018; Gehr et al., 2018; Wang et al.,
2018b; Tran et al., 2020; Ivanov et al., 2019; Fazlyab et al.,
2019), which perform layer-by-layer reachability analysis
to compute a reachable set that can be verified against the
property; and (iv) convex relaxations methods (Wang et al.,
2018a; Dvijotham et al., 2018; Wong & Kolter, 2017; Hen-
riksen & Lomuscio; Khedr et al., 2021; Wang et al., 2021;
Singh et al., 2019;?). Generally, (i), (ii), and (iii) do not
scale well to large networks. On the other hand, convex
relaxation methods use a branch and bound approach to
refine the abstraction. We note that some of the mentioned
methods combines techniques from (iii) and (iv). Lastly, any
of those verifiers can be modified to match our formulation
of checking the Product NN fairness properties. We chose
PeregriNN as it was easy to modify.

7. Discussion:
On the contention between Group and Individual fair-
ness: Group fairness is the requirement that different
groups should be treated similarly regardless of individual
merits. It is often thought of as a contradictory requirement
to individual fairness. However, this has been an issue of de-
bate (Binns, 2020). Thus, it’s not clear how our framework
for training might affect the group fairness requirement and
is left for further investigation.

Can fairness be achieved by dropping sensitive attributes
from data? Fairness through unawareness is the process
of learning a predictor that does not explicitly use sensitive
attributes in the prediction process. However, dropping the
sensitive attributes is not sufficient to remove discrimina-
tion as it can be highly predictable implicitly from other
features. It has been shown (Bonilla-Silva, 2006; Taslitz,
2007; Pedreshi et al., 2008; Amazon) that discrimination
highly occurs in different systems such as housing, crimi-
nal justice, and education that do not explicitly depend on
sensitive attributes in their predictions. We’d like to note
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that NN complete invariance to a sensitive or even a numer-
ical attribute is not always desired, as this can drastically
decrease the classifier’s accuracy. Our training framework
controls this trade off by the fairness regularization param-
eter. We also check the positivity rate to make sure the
training process didn’t result in a naive classifier.
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A. Datasets
In this section, we provide a detailed description of the
fairness datasets used in Section 5. We preprocess all
the datasets such that all numerical features are scaled to
[0, 1] and the categorical features are one-hot encoded. The
datasets are split into train and test sets that amount for 70%
and 30% of the actual data, respectively.

Adult: The adult dataset is considered one of the most com-
monly used datasets for fairness-aware classification studies.
The task is to predict whether the annual income of an in-
dividual exceeds $50000 US dollars based on demographic
characteristics. We consider the sensitive attribute for this
dataset to be gender, with the privileged group being males.

German: The German credit dataset is used for credit as-
sessment, i.e. decide if granting a credit to an individual
is risky or not. It contains 1000 instances with no missing
values.

Compas: The Compas dataset is used to predict whether a
criminal will be re-offending within two years. It contains
5278 preprocessed instances. We consider the sensitive
attribute for this dataset to be race, with the privileged group
being Caucasian.

Law School: The dataset contains records for law school
admission of different universities in the United States. The
goal is to predict whether a law student will pass the bar
exam. The dataset contains 112630 preprocessed records.
We consider the sensitive attribute for this dataset to be race,
with the privileged group being White.

Table 4 summarizes the number of positive labels in each
of the datasets. It is important to compare the percentage of
satisfaction of a fairness property with this value, because
a naive classifier can achieve 100 % fairness by classifying
all points positevly.
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B. Fairness constraints
In this section we provide a detailed explanation of the P2

fairness properties used to generate Table 2

Adult: The numerical domain is defined as Dϕ = [0.4, 1]×
[0.5, 0.7] × [0, 0.3],×[0, 0.2] × [0.5, 0.75]. The similarity
parameter δi = 0.05 ∀i ∈ {1, . . . n}

German: The numerical domain is defined as Dϕ = [0, 1]n.
The similarity parameter δi = 0.05 ∀i ∈ {1, . . . n}.

Compas: The numerical domain is defined as Dϕ = [0, 1]n.
The similarity parameter δi = 0.02 ∀i ∈ {1, . . . n}.

Law School: The numerical domain is defined as Dϕ =
[0, 1]n. The similarity parameter δi = 0.03 ∀i ∈
{1, . . . n}.

C. Additional experiments
We provide additional experiments similar to the ones
in Table 2 for different values of the regularization pa-
rameter λf . Specifically, we consider properties of class
P2 and compare between the impact of the global reg-
ularizer Lg

F and Ll
F for five randomly picked values of

λf ∈ {0.01, 0.03, 0.07, 0.1, 0.5}. We observe that the
global regularizer is able to enforce the fairness property
with small values of λf , but after a certain threshold, the
fairness loss dominates the loss and the accuracy starts to
decrease. The local fairness regularizer seems to have very
small effect for small values of λf but starts to improve
fairness for larger values starting from λf = 0.1 for this set
of properties and datasets.

The data in Table 5 enforces our conclusions in Section 5.3
that the global fairness regularizer outperforms the local
fairness regularizer in terms of providing better balance of
fairness and accuracy. For example, in the German dataset,
the local fairness regularizer was able to achieve 100% fair-
ness for λf = 0.5 but with a drop of accuracy from 75.30%
to 68.3%. On the other hand, the global fairness was able
to achieve the same 100% fairness with a much smaller
λf = 0.03 and a reduction in the accuracy from 75.30% to
73%. The same conclusion can be drawn among the Adult

Table 4: Number of data points classified positively. This
metric is important when investigating fairness of classifiers.
A naive classifier that classifies all points positively is 100
% fair.

Dataset Positivity rate (%)
Adult 24.17

German 66.33
Compas 52.95

Law School 26.34

and Compas datasets.

Table 5: Comparison between global and local fairness
regularizers for varying values of λf

λf Dataset Test Accuracy (%) Certified Fairness(%)
Base Lg

f Ll
f Base Lg

f Ll
f

Adult 84.55 84.33 85.24 6.40 84.11 29.21
0.001 German 75.30 73.00 74.33 8.64 95.06 17.28

Compas 68.30 67.86 68.87 47.22 44.44 16.66
Law 87.60 86.39 87.39 6.87 21.45 6.04
Adult 84.55 84.05 84.76 6.40 95.83 33.22

0.003 German 75.30 73.00 72.00 8.64 100.00 13.58
Compas 68.30 67.42 68.18 47.22 97.22 19.44
Law 87.60 76.86 86.64 6.87 76.87 0.83
Adult 84.55 83.75 84.88 6.40 100.00 41.40

0.007 German 75.30 72.66 71.33 8.64 100.00 22.22
Compas 68.30 64.89 68.62 47.22 100.00 33.33
Law 87.60 74.21 85.89 6.87 100.00 1.66
Adult 84.55 83.43 84.88 6.40 100.00 50.78

0.1 German 75.30 72.66 70.33 8.64 100.00 33.33
Compas 68.30 65.21 67.42 47.22 100.00 36.11
Law 87.60 73.92 85.44 6.87 99.79 1.45
Adult 84.55 82.56 84.82 6.40 100.00 57.65

0.5 German 75.30 69.30 68.30 8.64 100.00 100.00
Compas 68.30 64.90 65.40 47.22 100.00 66.66
Law 87.60 73.71 81.01 6.87 100.00 76.04


