
Neural Network Compression of ACAS Xu Early Prototype is Unsafe:
Closed-Loop Verification through Quantized State Backreachability

Stanley Bak 1 Hoang-Dung Tran 2

Abstract

ACAS Xu is an air-to-air collision avoidance sys-
tem designed for unmanned aircraft that issues
horizontal turn advisories to avoid an intruder
aircraft. Analysis of this system has spurred a
significant body of research in the formal meth-
ods community on neural network verification.
While many powerful methods have been devel-
oped, most work focuses on open-loop properties
of the networks, rather than the main point of
the system—collision avoidance—which requires
closed-loop analysis. In this work, we develop a
technique to verify a closed-loop approximation
of the system using state quantization and back-
reachability. We use favorable assumptions for
the analysis—perfect sensor information, instant
following of advisories, ideal aircraft maneuvers
and an intruder that only flies straight. When the
method fails to prove the system is safe, we refine
the quantization parameters until generating coun-
terexamples where the original (non-quantized)
system also has collisions.

1. Introduction
The Airborne Collision Avoidance System X (ACAS X) is a
mid-air collision avoidance system under development (Ol-
son, 2015), with the ACAS Xu variant focused on collision
avoidance for unmanned aircraft (Katz et al., 2017). Orig-
inally designed offline using dynamic programming and
Markov decision processes (MDPs) (Kochenderfer & Chrys-
santhacopoulos, 2011), the large rule table was compressed
by a factor of 1000 using a set of neural networks (Julian
et al., 2016). As collision avoidance is safety-critical, analy-

*Equal contribution 1Department of Computer Science, Stony
Brook University, New York, USA 2School of Computing, Uni-
versity of Nebraska-Lincoln, Lincoln, USA. Correspondence to:
Stanley Bak <stanley.bak@stonybrook.edu>, Hoang-Dung Tran
<dtran30@unl.edu>.

1 st Workshop on Formal Verification of Machine Learning, Bal-
timore, Maryland, USA. Colocated with ICML 2022. Copyright
2022 by the author(s).

sis of the neural networks has spurred a significant body of
research on neural network verification. Most existing work,
however, focuses on open-loop verification, such as property
ϕ3 from the original work (Katz et al., 2017), which states,
“if the intruder is directly ahead and is moving towards the
ownship, [a turn will be commanded].” Open-loop proper-
ties can be expressed in terms of constraints over the inputs
and outputs of a single execution of the neural network.
However, satisfying open-loop properties does not prove the
system is safe, as this requires reasoning with the physical
system dynamics—how the aircraft responds to turn com-
mands. Also, the system is running continuously and may
change advisories at a future time, complicating safety anal-
ysis. Verification of closed-loop safety of provided collision
avoidance system under all designed operating conditions is
thus a sort of grand challenge. While verification of neural
networks is continuously improving, an intriguing alternate
approach has recently been proposed based on input quan-
tization (Jia & Rinard, 2021). Rather than verifying the
neural network directly, which requires reasoning about the
semantics at each layer, the system’s execution semantics
are changed to round the inputs to a discrete set of possible
values before running the network.

In this work, we propose an approach to formally verify
quantized closed-loop NNCS. Although the technique is
general, we focus primarily on proving safety for quantized
version of the well-studied aircraft collision avoidance neu-
ral network benchmark. Two key ideas are needed to make
this work: (1) we perform state quantization rather than
input quantization and (2) we use backreachability from
the unsafe states to reduce the number of partitions. We
prove the approach is sound and complete, in the sense that
by continuing to refine quantization parameters, either the
quantized system will eventually be proven safe or an unsafe
counterexample will be found in the original system. When
the method fails to prove safety of quantized closed-loop
system, we refine the quantization values until discovering
cases where the original (unquantized) version of the sys-
tem fails. We also show that with stricter assumptions on
the ownship aircraft’s velocity, the quantized system can
guarantee safety.



Neural Network Compression of ACAS Xu Early Prototype is Unsafe

Figure 1. The closed-loop air-to-air collision avoidance system.

2. Background and Problem Formulation
We next review key aspects of the system design, proof
assumptions, and provide background on AH-Polytopes
before formulating the safety verification problem.

2.1. Collision Avoidance System Design

We are interested in safety verification and falsifica-
tion of the closed-loop air-to-air collision avoidance sys-
tem (Kochenderfer & Chryssanthacopoulos, 2011; Katz
et al., 2017) depicted in Figure 1.

A detailed description of the inputs and actions in the
system is shown in Table 1. The system receives 7
inputs about the state of an ownship and a nearby in-
truder aircraft, I = {ρ, θ, ψ, vown, vint, τ, aprev}, and pro-
duces one of five possible advisories for the ownship,
A = {COC, WL, WR, SL, SR}. The turn advisories in
the system are generated by 45 deep ReLU neural net-
works with 6 layers and 50 neurons per layer for each
network. Control switches between different neural net-
works Naprev,τ based on the previous advisory aprev (total
of 5 choices) and the time until loss of vertical separation
τ = {0, 1, 5, 10, 20, 50, 60, 80, 100} (total of 9 choices).
For example, the network N5,3 will be invoked if the pre-
vious advisory is aprev = SR and τ = 5. If the own-
ship and the intruder are at the same altitude, then τ = 0
and only five neural network controllers need to be used,
N1,1, N2,1, N3,1, N4,1, and N5,1.

2.2. Assumptions and Plant Model

Before we describe the plant model used in analysis, we first
state our system assumptions: (i) the intruder flies in straight-
line trajectories with constant speed, (ii) the ownship flies
with constant speed and its heading is adjusted every second
(the NNCS control period), (iii) the actions correspond to
heading changes in the intruder of 1.5 deg/sec for weak turn
commands, 3.0 deg/sec for strong turns and 0.0 deg/sec for
clear-of-conflict commands (Julian et al., 2016), (iv) there is
no sensor noise and (v) advisories are followed exactly and

immediately. To model the state of the system with these
assumptions, we use Cartesian coordinates. The values
xown, yown, xint, yint refer to the x and y positions of the
ownship and the intruder; vown =

√
(vxown)

2 + (vyown)2

and vint =
√

(vxint)
2 + (vyint)

2 are the speed of the own-
ship and the intruder; θown and θint are the heading of
the ownship and the intruder w.r.t the x axis. The system
performs idealized turn maneuvers modeled with Dubins
aircraft dynamics:

ẋown = vxown = vowncos(θown)

ẏown = vyown = vownsin(θown)

ẋint = vxint = vintcos(θint)

ẏint = vyint = vintsin(θint)

(1)

Equation 1 does not show clearly how the aircraft can be
controlled by changing their heading. Taking derivatives
of the Equation 1 one more time and noticing that θ̇own

is a constant between advisories, θ̇own = (π/180)u =
c(rad/s), and then taking θ̇int = 0, we obtain the following
8-d linear system dynamics:



ẋown

ẏown

v̇xown

v̇yown

ẋint
ẏint
v̇xint
v̇yint


=



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 −c 0 0 0 0
0 0 c 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





xown

yown

vxown

vyown

xint
yint
vxint
vyint


(2)

The linear model described in Equation 2 is valid for only
one control step, with a fixed control signal u, which may be
either −3,−1.5, 0, 1.5 or 3 deg/s depending on the specific
command. Therefore, this model can be considered as a
piece-wise linear model of the system. From the plant state
variables, we can obtain the inputs for the neural network
controller which are expected to in radial coordinates as



Neural Network Compression of ACAS Xu Early Prototype is Unsafe

Input Units Description Action Description
ρ ft distance between ownship and intruder SL strong left turn at 3.0 deg/s
θ rad angle to intruder w.r.t ownship heading WL weak left at turn 1.5 deg/s
ψ rad heading of intruder w.r.t ownship COC clear of conflict (do nothing)
vown ft/s velocity of ownship WR weak right turn at 1.5 deg/s
vint ft/s velocity of intruder SR strong right turn at 3.0 deg/s
τ s time until loss of vertical separation
aprev previous advisory

Table 1. Input variables used to produce a turn advisory.

follows.

θown = arctan(
vyown

vxown

), θint = arctan(
vyint
vxint

),

ρ =
√
(xint − xown)2 + (yint − yown)2,

θ = arctan(
yint − yown

xint − xown
)− θown, ψ = θint − θown.

2.3. Reachability with AH-Polytopes

An AH-polytope is a set representation that informally is
an affine transformation of a half-space polytope, where the
affine transformation and polytope terms are explicitly kept
separate. Although the name is fairly recent (Sadraddini &
Tedrake, 2019), this set representation has often been used
in reachability analysis for linear systems (Bak et al., 2019;
Bak & Duggirala, 2017) and neural networks (Tran et al.,
2019b; Bak et al., 2020), where it is also called a linear
star set (Duggirala & Viswanathan, 2016), constrained zono-
tope (Scott et al., 2016), affine form (Han & Krogh, 2006),
or symbolic orthogonal projection (Hagemann, 2014).

Importantly for this work, discrete-time reachability of sys-
tems with linear dynamics, ẋ = Ax, can be expressed ex-
actly using this set representation, as it amounts to a linear
transformation of the entire set by the matrix exponential
eAt, where t is the time step. Further, operations like in-
tersections can be performed exactly on AH-polytopes, as
well as linear optimization over the sets. A formal definition
and operation list is provided in Appendix.

2.4. Safety Problem Formulation

Verifying the safety of the closed-loop system means prov-
ing the absence of unsafe paths under all operating condi-
tions. For simplified presentation, we consider a discrete-
time version of the problem, where we only check for col-
lisions once a second when the system is activated. Our
analysis could be extended to continuous time through con-
servative time-discretization approaches from hybrid sys-
tems reachability analysis (Forets & Schilling, 2021), which
essentially bloat the initial set and then perform discrete-
time analysis.

Definition 2.1 (Path). A path is written as s1
α1−→ s2

α2−→

. . .
αn−1−−−→ sn, where successive values of si and si+1 corre-

spond to the state of the system one second apart according
to the plant dynamics in Equation 2. The command αi is
the system output from state si using αprev = αi−1, with s1
using the COC network. Paths can either be in-plane, where
τ̇ = 0 and τ = 0 in all states and so the N1,∗ networks
get used to generate all commands, or out-of-plane, where
τ̇ = −1. In the out-of-plane case, each state in the path
should decrease τ by one second.

An unsafe path has s1 as an initial state and sn as an unsafe
state.
Definition 2.2 (Initial State). An initial state of the state
of the system is one where the aircraft are outside of the
system’s operating range (ρ > 60760 ft).
Definition 2.3 (Unsafe State). Unsafe states are defined to
be any states in the near mid-air collision (NMAC) cylin-
der (Marston & Baca, 2015), where the horizontal separation
ρ is less than 500 ft and the time to loss of vertical separation
τ is zero seconds.

The operating conditions where the system should ensure
safety are extracted based on the training ranges used for
the original neural networks (Kochenderfer & Chryssantha-
copoulos, 2011; Katz et al., 2017). The system should be
active when the distance between aircraft ρ ∈ [0, 60760] ft,
otherwise clear-of-conflict is commanded. The valid values
for the ownship velocity are vown ∈ [100, 1200] ft/sec, valid
values for intruder velocity are vint ∈ [0, 1200] ft/sec, and
the angular inputs θ and ψ are both between −π and π.

3. Quantized State Backreachability
Our verification strategy is to compute the backwards reach-
able set of states from all possible unsafe states, trying to a
find a path that begins with an initial state. We first partition
the unsafe states along state quantization boundaries.

3.1. Partitioning the Unsafe States

Since the system advisories are only based on relative po-
sitions and headings, we eliminate symmetry by assuming
that at the time of the collision the intruder is flying due
east and at the origin. We then consider all possible posi-



Neural Network Compression of ACAS Xu Early Prototype is Unsafe

tions of the ownship to account for all possible unsafe states.
Three quantization parameters are used in the analysis: qpos
to quantize positions, qvel to quantize velocities, and qθ to
quantize the heading angle. Based on these parameters, we
partition the unsafe states into 8-d AH-polytopes covering
the entire set of possible unsafe states. The eight dimensions
correspond to the system states in the linear dynamics in
Equation 2, including positions x, y, and velocities vx, vy

for both the ownship and intruder. Associated with each
partition, we also enumerate the five possible previous com-
mands αprev and two possibilities for whether there is a
relative vertical velocity—whether the time to loss of verti-
cal separation is fixed at 0 or decreasing, τ̇ ∈ {0,−1}.

To create partitions, the xown and yown values are divided
into a grid based on qpos. The intruder position (xint, yint)
is set to (0, 0). The intruder and ownship velocities are
partitioned based on qvel, which gets reflected in the x and
y velocity state variables for the two aircraft. The intruder
is moving due east, so vyint = 0 and vxint is set to the range
of intruder velocities corresponding to the current partition.
The heading of the angle of the ownship is partitioned based
on qθ, where each partition has a lower and upper bound on
the heading [θlbown, θ

ub
own]. From the current range of values

for the ownship heading and the range of values for the
ownship velocity, we can construct linear bounds on vxown

and vyown. This is done by connecting five points, a, b, c, d
and e, where a and b are the points at two extreme angles
and minimum velocity, c and d are the two extreme angles
and max velocity, and e is the point at the intersection of
the tangent lines of the maximum velocity circle at c and
d. A visualization is shown in Figure 2. We use qθ = 1.5
deg (as it makes for a cleaner backreachability step), which
guarantee all possible vxown, v

y
own values are covered.

vlb

Linear Bounds on
Ownship Velocity
θown
lb

θown
ub

vub
vown
x

vown
y

a

b

c

d

e

Figure 2. The ownship velocity range and heading angle range are
used to create linear bounds on vxown and vyown by connecting the
points a, b, c, d and e.

3.2. Backreachability from Each Partition

Once a covering of the entire set of unsafe states is per-
formed, for each partition we compute the exact set of pre-
decessor states that can lead to the states in the partition
at a previous step. This process is repeated until either no

predecessors exist or an initial state predecessor is found1,
as described in Definition 2.2. In the latter case, a path exists
from an initial state to a partition of the unsafe states in the
quantized closed-loop system. Otherwise, if no partitions
contain unsafe paths, then the quantized closed-loop system
is safe.

The check state function in Algorithm 1 recursively
computes and checks predecessors. The input is a state set
S, which is initially an 8-d partition of the unsafe states
represented as an AH-Polytope, as well as the associated
value of αprev and the time to loss of vertical separation,
τ = 0 in all unsafe states.

Algorithm 1 High-level algorithm for single partition back-
reachability.
Function :check state, Recursively checks safety of predecessors
Input :State set: S, Prev cmd: αprev, Time to loss of vertical separation: τ
Output :Verification Result (safe or unsafe)

1 P = backreach step(S, αprev) // state set of one-step
predecessors

2 τprev = τ − τ̇ // τ̇ is fixed at either 0 or -1
3 for αprevprev in [COC, WL, WR, SL, SR] do
4 predecessor quanta← List()
5 all correct← TRUE
6 for q in possible quantized states(P) do
7 if run network(αprevprev, τprev, q) = αprev then
8 predecessor quanta.append(q)
9 if ρmin(q) > 60760 then

10 return unsafe // predecessor is valid initial
state

11 else
12 all correct← FALSE

13 end
14 if all correct then
15 // recursive case without splitting
16 if check state(P, αprevprev, τprev) = unsafe then
17 return unsafe
18 end
19 else
20 // recursive case with splitting along quantum

boundaries
21 for q in predecessor quanta do
22 T ← quantized to state set(q)
23 Q ← T ∩ P
24 if check state(Q, αprevprev, τprev) = unsafe then
25 return unsafe
26 end
27 end
28 end
29 return safe

In line 1, backreach step is called, which returns the
predecessor set of states as an AH-polytope P . This is done
by taking the linear derivative matrix Ac from Equation 2
with the value of c corresponding to αprev, and then com-
puting the matrix exponential W = e−Ac . The resulting
matrix is the solution matrix for the system one second prior.
A linear transformation of the AH-polytope S is then per-
formed by W in order to obtain P . In line 2, the value of
the time to loss of vertical separation at the previous step
τprev is computed. This either always equals 0 if τ̇ = 0

1Degenerate paths could theoretically exist of infinite length
that never include a valid initial state, but we did not observe this
occurring in practice.



Neural Network Compression of ACAS Xu Early Prototype is Unsafe

for the current partition corresponding to in-plane flight, or
increases by 1 at each call to check state if τ̇ = −1 for
out-of-plane flight.

Next, the algorithm computes states in P where the com-
mand produced by the networks was αprev and the time to
loss of vertical separation was the value at the previous step,
τprev. This requires iterating over the five possible networks
that could have been used at the prior state (the loop on
line 3). For each network (corresponding to αprevprev), we
check each quantized state in P (line 6).

The possible quantized states returns a list of
quantized states, which are 5-tuples of integers, q =
(dx, dy, θown, vown, vint). The dx and dy terms correspond
to the difference in positions between the intruder and own-
ship, divided by the position quantum qpos. The θown term
is the heading angle divided by qθ, and the velocities vown

and vint are the fixed aircraft velocities, integer divided by
qvel. The function computes the possible quantized states
by using linear programming to find P’s bounding box, and
then looping over possible quantized states to check for
feasibility when intersected with AH-polytope P .

Line 7 runs the neural network corresponding to αprevprev on
quantized state q to check if the correct command (αprev) is
obtained. This process requires converting from the quan-
tized state (a 5-tuple of integers) to continuous inputs for
the neural network. To do this, we use Equation 2.2, noting
that the θown is quantized using qθ, θint is always 0, and the
computation of ρ and θ uses the dequantized value of dx
and dy (xint − xown is taken to be qpos

2 + dx ∗ qpos).

When the network output matches the required αprev com-
mand, line 8 adds the quantized state to the valid list of
predecessors predecessor quanta. Otherwise, line 12
sets the all correct flag to false, since some of the
quantized states are not valid predecessors. Line 10 checks
if the predecessor state satisfies the initial state condition,
in which case an unsafe path has been found. On this line,
ρmin(q) is the minimum aircraft separation distance in the
quantized state q, which must be greater than 60760 ft in an
initial state.

After classifying each quantized predecessor state, either
all quantized states had the correct output or some did not.
Based on this, we either recursively call check state on
the entire set P (line 16), or we split the set P into parts, and
only recursively call check state on parts that had the
correct output. On line 22, quantized to state set
returns the 8-d continuous states corresponding to the quan-
tized state q, which is then intersected with P before being
recursively passed to check state. When splitting is
performed, it is possible that no states had the correct output
(predecessor quanta may be empty).

We next prove the described algorithm is sound with respect

to the safety of the quantized closed-loop system.
Theorem 3.1 (Soundness). If check state returns safe
for every partition, the quantized closed-loop system is safe.

3.3. Falsification of Original (Unquantized) System

The algorithm in the previous section can be used to effi-
ciently find unsafe paths of the original, unquantized, closed-
loop neural network control system. This is done by repeat-
edly calling the algorithm with smaller and smaller quanti-
zation constants qpos, qvel and qθ and checking the quantized
system for safety.

At each step if the safety proof fails, with small mod-
ifications to check state we can get the trace corre-
sponding to the unsafe path for each partition. In par-
ticular, rather than simply returning unsafe on line 10,
we can instead return the set of unsafe initial states
quantized to state set(q) ∩ P . A witness point
inside this set can be obtained through linear programming2.
This witness point is then executed on the original system,
without quantization, checking for safety. If the witness
point is safe in the non-quantized system, the quantization
constants are refined by taking turns dividing each of them
in half.
Theorem 3.2 (Completeness). By following the falsification
approach above and repeatedly refining qpos, qvel and qθ,
either we will prove the quantized system is safe or find an
unsafe trace in the original, unquantized system.

4. Evaluation
We implemented the approach and set out to prove the safety
of quantized closed-loop air-to-air collision avoidance sys-
tem. We ran the measurements on an Amazon Web Ser-
vices (AWS) Elastic Computing Cloud (EC2) server with
a c6i.metal instance type, which has a 3.5 GHz Intel
Xeon processor with 128 virtual CPUs, and 256 GB mem-
ory. The algorithm is easily parallelized as proofs for each
partition of the unsafe states can be checked independently.

4.1. Complete Proof of Safety Attempt

We first attempted a proof of safety for the entire range of
unsafe states for ACAS Xu. For this, we started with large
quantization values, qpos = 500 ft, qvel = 100 ft/sec, and qθ
= 1.5 deg. In this case, the unsafe near-mid-air collision
circle of radius 500 ft can be covered with 4 partitions, the
complete velocity range of the ownship [100, 1200] needs
11 partitions, the velocity of the intruder [0, 1200] needs
12 partitions, the heading angle of the ownship is divided

2For witness points, we use the Chebyshev center of the six-
dimensional state polytope (removing yint and vyint since they are
fixed at zero), as it helps avoid numerical issues that can occur at
the boundaries of the set.



Neural Network Compression of ACAS Xu Early Prototype is Unsafe

into 360 deg
1.5 deg = 240 partitions, and there are 5 choices for

the αprev and two possibilities to check for τ̇ . Multiplying
these together, we get a total of 1267200 partitions of the
unsafe states, each of which we pass to check state
(Algorithm 1).

This quickly, within a minute, finds counterexamples in the
quantized system. When the witness initial states of the
quantized counterexample are replayed on the original non-
quantized system, according to the falsification algorithm
from Section 3.3, these were also found to be unsafe! The
exact runtime before an unsafe case is found depends on
the order in which the partitions are searched, but we found
that although changing this did affect the counterexample
produced, the runtime was usually less than a minute. Two
of the unsafe cases are shown in Appendix C in Figure 3 in
parts (a) and (b).

In the situation shown in Figure 3(a), the intruder starts
beyond the range of the network (ρ > 60780 ft). As soon
as the intruder gets in range, a turn is commanded, but the
velocity of the ownship is slow and a collision still occurs.
This situation looks like it could be fixed by increasing the
range of the system beyond 60780 ft—likely requiring re-
training the networks—to allow a turn to be commanded
earlier. Alternatively, perhaps adding a “do not turn” op-
tion as a possible output would be another way to address
this scenario (clear-of-conflict could allow the ownship to
maneuver as desired which may be unsafe here).

Figure 3(b) shows another unsafe case found that is particu-
larly concerning. This is a tail-chase scenario, although the
ownship is already moving away from the straight-line tra-
jectory of the intruder. The system nonetheless commands a
turn and actively maneuvers the ownship aircraft back into
the path of the intruder. This situation demonstrates one
of the dangers of the collision risk metric used to evaluate
the effectiveness of many air-to-air collision avoidance sys-
tems, which compares the number of near mid-air collisions
(NMAC) with and without the system using a large number
of simulations. Although a system can be effective by this
metric, in specific cases it may still create collisions that
would not otherwise have occurred, as demonstrated in this
scenario.

4.2. Proving Safety in More Limited Operating
Conditions

As the proof of safety for the entire operating range failed,
we next tried to prove safety in restricted operating condi-
tions. Many of the unsafe situations found, including the
two above, had a slow ownship velocity and a fast intruder.
By making the ownship fast enough, we hypothesized colli-
sions could be avoided.

When we restricted the range of vown to be in [1000, 1200]

ft/sec, using qpos = 250 ft, qvel = 50 ft/sec, and qθ = 1.5
deg, we were able to guarantee safety of the quantized
closed-loop neural network control system. The proof re-
qured checking 3.7 million cases and took about 32 minutes.
The longest runtime for any single call to check state
(checking a single partition) was 63 seconds.

Reducing vown further to [950, 1000] ft/sec made the quan-
tized system unsafe. Following the falsification approach
from Section 3.3, we refined the quantization parameters
until we were able to find a counterexample in the original
unquantized closed loop system. In this case, the ownship
was moving with vown = 964.1 ft/sec, and the time to loss
of vertical separation τ was initially 75 secs (the quantized
system was safe for in-plane flight, with τ̇ = 0). This case
is shown in Appendix C in Figure 3(c).

From the other side, we can alternatively attempt to prove
safety under the assumption that the intruder is slow without
restricting the ownship’s velocity. In this case, the method
also finds unsafe counterexamples in the unquantized sys-
tem, such as the 159 second trace shown in Figure 3(d) with
vint = 390.1 ft/sec. In this case, the command switch from
weak-left to strong-right a few seconds before the collision
corresponds to the relative position angle θ wrapping from
−π to π. This discontinuity in the network input between
successive steps is a strong candidate root cause of the even-
tual near mid-air collision.

5. Conclusion
In this work, we set out to prove the closed-loop safety of
one of the most popular benchmarks for neural network veri-
fication methods, using a new algorithm based on state quan-
tization and backreachability. In principle, the approach
scaled sufficiently well to be able to verify the system under
all valid initial states and aircraft velocities. However, the
proof process instead found many unsafe scenarios where
the original, unquantized system had near mid-air colli-
sions, despite ideal assumptions on sensors and maneuver-
ing. Compared with random simulation-based analysis, we
could find counterexamples at more extreme velocities, as
well as provide proofs of safety of the quantized closed-loop
system in more limited scenarios.

The approach is could be attractive for certification. A sys-
tem with a quantization layer behaves like a large lookup
table, and the method is therefore effective on any size net-
work with any layer type, and may even be applicable to
other machine learning approaches. The trade-off of quan-
tization is usually a small degradation in performance of
the controller, with a significant benefit of reducing analysis
complexity and allowing for the possibility of verification.



Neural Network Compression of ACAS Xu Early Prototype is Unsafe

References
Bak, S. nnenum: Verification of relu neural networks with

optimized abstraction refinement. In NASA Formal Meth-
ods Symposium, pp. 19–36. Springer, 2021.

Bak, S. and Duggirala, P. S. Hylaa: A tool for comput-
ing simulation-equivalent reachability for linear systems.
In Proceedings of the 20th International Conference on
Hybrid Systems: Computation and Control, HSCC ’17,
2017.

Bak, S., Tran, H.-D., and Johnson, T. T. Numerical verifica-
tion of affine systems with up to a billion dimensions. In
Proceedings of the 22Nd ACM International Conference
on Hybrid Systems: Computation and Control, HSCC
’19, pp. 23–32, New York, NY, USA, 2019. ACM. ISBN
978-1-4503-6282-5.

Bak, S., Tran, H.-D., Hobbs, K., and Johnson, T. T. Im-
proved geometric path enumeration for verifying relu neu-
ral networks. In Proceedings of the 32nd International
Conference on Computer Aided Verification. Springer,
2020.

Bak, S., Liu, C., and Johnson, T. The second interna-
tional verification of neural networks competition (VNN-
COMP 2021): Summary and results. arXiv preprint
arXiv:2109.00498, 2021.

Chen, X., Ábrahám, E., and Sankaranarayanan, S. Flow*:
An analyzer for non-linear hybrid systems. In Interna-
tional Conference on Computer Aided Verification, pp.
258–263. Springer, 2013.

Clavière, A., Asselin, E., Garion, C., and Pagetti, C. Safety
verification of neural network controlled systems. In
2021 51st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-
W), pp. 47–54. IEEE, 2021.

Duggirala, P. S. and Viswanathan, M. Parsimonious, simula-
tion based verification of linear systems. In International
Conference on Computer Aided Verification, pp. 477–494.
Springer, 2016.

Dutta, S., Chen, X., and Sankaranarayanan, S. Reachabil-
ity analysis for neural feedback systems using regressive
polynomial rule inference. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Com-
putation and Control, pp. 157–168, 2019.

Forets, M. and Schilling, C. Conservative time dis-
cretization: A comparative study. arXiv preprint
arXiv:2111.01454, 2021.

Hagemann, W. Reachability analysis of hybrid systems
using symbolic orthogonal projections. In International

Conference on Computer Aided Verification, pp. 407–423.
Springer, 2014.

Han, Z. and Krogh, B. H. Reachability analysis of large-
scale affine systems using low-dimensional polytopes. In
International Workshop on Hybrid Systems: Computation
and Control, pp. 287–301. Springer, 2006.

Huang, C., Fan, J., Li, W., Chen, X., and Zhu, Q. Reachnn:
Reachability analysis of neural-network controlled sys-
tems. ACM Transactions on Embedded Computing Sys-
tems (TECS), 18(5s):1–22, 2019.

Ivanov, R., Weimer, J., Alur, R., Pappas, G. J., and Lee,
I. Verisig: verifying safety properties of hybrid systems
with neural network controllers. In Proceedings of the
22nd ACM International Conference on Hybrid Systems:
Computation and Control, pp. 169–178, 2019.

Jia, K. and Rinard, M. Verifying low-dimensional input
neural networks via input quantization. In International
Static Analysis Symposium, pp. 206–214. Springer, 2021.

Johnson, T. T., Lopez, D. M., Benet, L., Forets, M.,
Guadalupe, S., Schilling, C., Ivanov, R., Carpenter, T. J.,
Weimer, J., and Lee, I. Arch-comp21 category report:
Artificial intelligence and neural network control systems
(ainncs) for continuous and hybrid systems plants. EPiC
Series in Computing, 80:90–119, 2021.

Julian, K. D. and Kochenderfer, M. J. Guaranteeing safety
for neural network-based aircraft collision avoidance sys-
tems. In 2019 IEEE/AIAA 38th Digital Avionics Systems
Conference (DASC), pp. 1–10. IEEE, 2019.

Julian, K. D., Lopez, J., Brush, J. S., Owen, M. P., and
Kochenderfer, M. J. Policy compression for aircraft colli-
sion avoidance systems. In 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), pp. 1–10. IEEE,
2016.

Julian, K. D., Kochenderfer, M. J., and Owen, M. P. Deep
neural network compression for aircraft collision avoid-
ance systems. Journal of Guidance, Control, and Dynam-
ics, 42(3):598–608, 2019.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient SMT solver for verifying
deep neural networks. In International Conference on
Computer Aided Verification, pp. 97–117. Springer, 2017.

Kochenderfer, M. J. and Chryssanthacopoulos, J. Robust
airborne collision avoidance through dynamic program-
ming. Massachusetts Institute of Technology, Lincoln
Laboratory, Project Report ATC-371, 130, 2011.

Kochenderfer, M. J., Edwards, M. W., Espindle, L. P.,
Kuchar, J. K., and Griffith, J. D. Airspace encounter



Neural Network Compression of ACAS Xu Early Prototype is Unsafe

models for estimating collision risk. Journal of Guidance,
Control, and Dynamics, 33(2):487–499, 2010.

Liu, C., Arnon, T., Lazarus, C., Barrett, C., and Kochender-
fer, M. J. Algorithms for verifying deep neural networks.
arXiv preprint arXiv:1903.06758, 2019.

Lopez, D. M., Johnson, T. T., Tran, H.-D., Bak, S., Chen, X.,
and Hobbs, K. Verification of neural network compres-
sion of acas xu lookup tables with star set reachability. In
AIAA Scitech 2021 Forum. AIAA, January 2021.

Marston, M. and Baca, G. ACAS-Xu initial self-separation
flight tests. http://hdl.handle.net/2060/
20150008347, 2015.

Olson, W. A. Airborne collision avoidance system x. Tech-
nical report, MASSACHUSETTS INST OF TECH LEX-
INGTON LINCOLN LAB, 2015.

Sadraddini, S. and Tedrake, R. Linear encodings for poly-
tope containment problems. In 2019 IEEE 58th Confer-
ence on Decision and Control (CDC), pp. 4367–4372.
IEEE, 2019.

Scott, J. K., Raimondo, D. M., Marseglia, G. R., and Braatz,
R. D. Constrained zonotopes: A new tool for set-based
estimation and fault detection. Automatica, 69:126–136,
2016.

Tran, H.-D., Cai, F., Diego, M. L., Musau, P., Johnson, T. T.,
and Koutsoukos, X. Safety verification of cyber-physical
systems with reinforcement learning control. ACM Trans-
actions on Embedded Computing Systems (TECS), 18(5s):
1–22, 2019a.

Tran, H.-D., Lopez, D. M., Musau, P., Yang, X., Nguyen,
L. V., Xiang, W., and Johnson, T. T. Star-based reacha-
bility analysis of deep neural networks. In International
Symposium on Formal Methods, pp. 670–686. Springer,
2019b.

Tran, H.-D., Xiang, W., and Johnson, T. T. Verifica-
tion approaches for learning-enabled autonomous cyber-
physical systems. IEEE Design & Test, 2020a.

Tran, H.-D., Yang, X., Manzanas, D., Musau, P., Nguyen, L.,
Xiang, W., Bak, S., and Johnson, T. T. Nnv: The neural
network verification tool for deep neural networks and
learning-enabled cyber-physical systems. In Proceedings
of the 32nd International Conference on Computer Aided
Verification. Springer, 2020b.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
Formal security analysis of neural networks using sym-
bolic intervals. In 27th USENIX Security Symposium, pp.
1599–1614, 2018.

Zombori, D., Bánhelyi, B., Csendes, T., Megyeri, I., and
Jelasity, M. Fooling a complete neural network verifier.
In International Conference on Learning Representations,
2020.

http://hdl.handle.net/2060/20150008347
http://hdl.handle.net/2060/20150008347


Neural Network Compression of ACAS Xu Early Prototype is Unsafe

A. AH-Polytope
Definition A.1 (AH-Polytope). An AH-Polytope is a tuple Θ = ⟨V, c, C, d⟩ that represents a set of states as follows:

JΘK = {x ∈ Rn | ∃α ∈ Rm, x = V α+ c ∧ Cα ≤ d}.

Proposition A.2 (Affine Mapping). An affine mapping of an AH-Polytope Θ = ⟨V, c, C, d⟩ with a mapping matrix W and
an offset vector b is a new AH-Polytope Θ′ = ⟨V ′, c′, C ′, d′⟩ in which V ′ =WV, c′ =Wc+ b, C ′ = C, d′ = d.

Proposition A.3 (Linear Transformation). A linear transformation of an AH-Polytope with a matrixW is an affine mapping
using mapping matrix W and an offset vector of b = 0.

Proposition A.4 (Intersection). The intersection of Θ = ⟨V, c, C, d⟩ and a half-space H = {x | Gx ≤ g} is a new
AH-Polytope Θ′ = ⟨V ′, c′, C ′, d′⟩ with c′ = c, V ′ = V, C ′ = [C;GV ], d′ = [d; g −Gc].

Proposition A.5 (Linear Optimization). Linear optimization in given a direction w ∈ Rn over a star set Θ = ⟨V, c, C, d⟩
can be solved with linear programming as follows: min(wTx), s.t. x ∈ Θ = wT c+min(wTV α), s.t. Cα ≤ d.

B. Proofs
B.1. Proof for Theorem 3.1

Proof. We proceed by contraction. Assume the quantized closed-loop system is unsafe and so these exists a finite path from
an initial state to an unsafe state, s1

α1−→ s2
α2−→ . . .

αn−1−−−→ sn. Since the unsafe state partitioning covers the full set of
unsafe states, the unsafe state sn is in some partition. We can follow the progress of sn ∈ S, through check state at
each recursive call.

At each call, si ∈ S has a predecessor si−1 ∈ P that gets to si using command αi−1. In the call to check state, αprev
will be αi−1. The value of τprev is incremented at each call on line 2 and so always correctly corresponds to si−1. Since
si−1 ∈ P , si−1 will also be in one of the quantized states qi−1 checked on line 6. The existence of the counterexample
path segment

αi−2−−−→ si−1
αi−1−−−→ si means that the condition on line 7 will be true when αprevprev = αi−2, and so qi−1 will

be added to predecessor quanta. Since si−1 is both in P and in the state set corresponding to a quantized state in
predecessor quanta, it will be used in a recursive call to check state. This argument can be repeated for all states
in the unsafe path back to the initial state s1, which would have been returned as unsafe on line 10 rather than used in a
recursive call. This contradicts the assumption that check state returned safe for every partition.

B.2. Proof for Theorem 3.2

Proof. First, consider the case that the system is robustly unsafe, which we define as there existing a ball Binit of initial
states of radius δ > 0 that all follow the same command sequence α1, α2, . . . , αn and end in the unsafe set. Since all the
initial states follow the same command sequence, the linear transformations corresponding to the commands α1, α2, . . . , αn,
which we call Ac1 , Ac2 , . . . , Acn can be multiplied together into a single matrix that transforms initial states to unsafe
states, AC = Acn . . . Ac2Ac1 . The matrix AC is invertible since all the transformations corresponding to each command
Ac1 , Ac2 , . . . , Acn are invertible. The matrix AC being invertible means that since the volume of the ball in the initial states
Binit is nonzero, the corresponding set of states in the unsafe set is an ellipsoid with nonzero volume, which we call Eunsafe.
Through refinement of the quantization parameters qpos, qvel and qθ, eventually a partition will be entirely contained in Eunsafe.
When this happens, every witness point of the quantized counterexample from that partition will be in Binit, and so will be
an initial state of an unsafe oath of the original, unquantized system.

Perhaps less practically, even if the original system is not robustly unsafe, the process still will theoretically terminate when
finite-precision numbers are used in the non-quantized system, such as with air-to-air collision avoidance neural networks
that use 32-bit floats. As the quantization values are halved, the difference between the unsafe state in the quantized and
nonquantized system is also reduced, until it reaches numeric precision.

C. Unsafe Encounter Images
Figure 3 shows images of unsafe encounters found using the described method.



Neural Network Compression of ACAS Xu Early Prototype is Unsafe

(a) Immediate Turn Command. (b) Safety System Causes Crash.

(c) Fast Ownship and τ > 0. (d) Slow Intruder.

Figure 3. Unsafe counterexamples found in the original non-quantized NNCS.

D. Comparison with Other Approaches
As far as we are aware, the proposed method is the first to provide safety guarantees while varying all of the operating
conditions of the neural network compression of the collision avoidance system.

One related technique, based on computing discrete abstractions and forward reachability was able to provide safety
guarantees for the similar Horizontal CAS (Julian & Kochenderfer, 2019). This system is simpler to analyze: the inputs
were modified to take in Cartesian state variables, the operating range was smaller (ρ < 50000), there were fewer neural
networks in the system, each of which had half as many neurons per layer, and critically, fixed velocities of vown = 200 and
vint = 185 were considered, rather than using velocity ranges. Despite these simplifications, analysis took 227 CPU hours,
mostly on the neural network analysis step to analyze 74 million partitions. For a comparison, we analyzed the larger neural
networks in this work with the proposed state quantization and backreachability method, using the same fixed vown and vint
values. Using a quantized system with qpos = 250 ft and qθ = 1.5 deg, the method proved safety of all 38400 partitions of
the unsafe states in 60.6 seconds. Also note that while the Horizontal CAS discrete abstraction approach can sometimes
prove safety, it would be poor at generating counterexamples, as abstract reachability overapproximates the true reachable
set; abstract counterexamples do not correspond to real counterexamples. In contrast, the backwards reachability performed
in Algorithm 1 is exact with respect to the quantized system, and the gap between the quantized and original system can be
reduced by refining the quantization parameters, making it highly effective for counterexample generation.

We also compared our method with simulation-based analysis, which cannot provide guarantees about system safety but
should be able to find unsafe counterexamples if enough simulations are attempted, as the system was shown to be unsafe.
In earlier work (Julian et al., 2019), 1.5 million encounters were simulated for the original neural network compression to
evaluate the risk of collisions, sampling from probability distributions of actual maneuvers and taking into account sensor
noise. We evaluated the same number of simulations without sensor noise and sampling over the entire set of operating
conditions, in order to match the assumptions used in the safety proof. We generated uniform random initial states by



Neural Network Compression of ACAS Xu Early Prototype is Unsafe

considering an initial ρ ∈ [60760, 63160] and θ, ψ, vown and vint in their entire operating range. When considering τ̇ = −1,
we assigned the initial value of τ between 25 and 160 seconds, as the unsafe case in Figure 3(d) was a 159 second trace. We
repeated the process of running 1.5 million simulations one hundred times each for both τ̇ = −1 and τ̇ = 0, in order to
account for statistical noise.

In the τ̇ = 0 case, each batch of 1.5 million simulations found on average 17.07 unsafe paths. The unsafe cases were
dominated by situations where the intruder velocity was low and the ownship velocity was high. The mean value of vint was
997.8, with a standard deviation of 147.5. The lowest values of vint over the unsafe cases in all 150 million simulations
was 927.6, whereas Figure 3(d) showed a case with vint = 390.1 found with our approach. The mean value of vown in the
unsafe cases was 133.4 with a standard deviation of 43.0. The greatest value of vown over all the unsafe cases found with
150 million simulations was 452.3, whereas our approach found an in-plane case with vown = 881.6.

The performance of simulation analysis for the out-of-plane case is even worse, as the initial state must also correctly choose
the value of the time to loss of vertical separation τ in order to find a collision. Each batch of 1.5 million simulations
with τ̇ = −1 had on average 0.07 unsafe simulations. The maximum ownship velocity vown in the unsafe cases had a
mean of 175.4 with a standard deviation of 77.9. The greatest value of vown over the unsafe cases found in all 150 million
simulations was 343.0, whereas our approach found a case with vown = 964.1, as shown before in Figure 3(c).

Overall, while simulation analysis may find some unsafe cases, it would be difficult to find the extreme velocity cases
discovered with the proposed approach. Further, simulation analysis is incomplete and cannot prove safety for the system
under subsets of operating conditions as was done in Section 4.2.

E. Related Work
Simulation-based Safety Analysis. The air-to-air collision avoidance system was originally evaluated using 1.5 million
simulations (Kochenderfer et al., 2010) based on Bayesian statistical encounter models. This uses relaxed assumptions
compared with our work, such as allowing for changes in acceleration. The output of such analysis is not a yes/no assessment
of safety, as the system can clearly be unsafe if the intruder is faster than the ownship and maneuvers adversarially, but rather
a risk score assessment of the change in safety compared to without using the system. Via simulation, given a bounded
uncertainty in sensing and control, the probability of near-mid-air-collision was about 10−4 (Julian et al., 2019). Although
simulations show that the system may be unsafe, we do not know if the collision occurs due to the uncertainty or the system
itself. In this work, we could show that the system itself was unsafe, even if we have perfect sensing and control.

Verification of NNCS. The Verisig approach (Ivanov et al., 2019) verifies a NNCS by transforming a network with a
sigmoidal neural network controller to an equivalent hybrid system that can be analyzed with Flow* (Chen et al., 2013),
a well-known tool for verifying nonlinear hybrid systems. Another method (Huang et al., 2019; Dutta et al., 2019)
combines polynomial approximation of the neural network controller with the plant’s physical dynamics to construct a tight
overapproximation of the system’s reachable set. The star set approach (Tran et al., 2019a) shows that the exact reachable
set of an NNCS with a linear plant model and a ReLU neural network controller can be computed, although this is expensive
when initial states are large. These methods build upon open-loop neural network verification algorithms (Liu et al., 2019;
Tran et al., 2020a), which can be difficult to scale to large complex networks (Bak et al., 2021) and can sometimes lose
soundness due to floating-point numeric issues (Zombori et al., 2020). The proposed quantization analysis only needs to
execute neural networks, and so does not suffer from these problems.

Verification of the Closed-loop Air-to-Air Collision Avoidance System. Existing works have verified NNCS with a single
neural network controller on a small set of initial states (Johnson et al., 2021). The closed-loop system involves switching
between multiple neural networks and has a large set of initial states, creating a unique challenge for verification. The
simplified Horizontal CAS system was analyzed using fast symbolic interval analysis for neural network controllers (Wang
et al., 2018) to construct a discrete abstraction (Julian & Kochenderfer, 2019). This method can consider sensor uncertainty,
inexact turn commands, and pilot delay, although simplified assumptions are made, as discussed in Section D. Recently,
the same system as this work has been verified with extensions of the symbolic interval method (Clavière et al., 2021) and
with star-based reachability (Lopez et al., 2021) in nnv (Tran et al., 2020b) and nnenum (Bak, 2021). These approaches use
forward reachability analysis and provide sound but not complete verification results. However, verification has only been
demonstrated for specific scenarios with small sets of initial states, not the full operating conditions considered here.


