
Programmatic Reinforcement Learning with Formal Verification

Yuning Wang 1 He Zhu 1

Abstract
We present Marvel, a verification-based reinforce-
ment learning framework that synthesizes safe
programmatic controllers for environments with
continuous state and action space. The key idea is
the integration of program reasoning techniques
into reinforcement learning training loops. Mar-
vel performs abstraction-based program verifica-
tion to reason about a programmatic controller
and its environment as a closed-loop system.
Based on a novel verification-guided synthesis
loop for training, Marvel minimizes the amount of
safety violation in the system abstraction, which
approximates the worst-case safety loss, using
gradient-descent style optimization. Experimen-
tal results demonstrate the substantial benefits
of leveraging verification feedback for safe-by-
construction of programmatic controllers.

1. Introduction
In safety-critical domains, guaranteeing the safety of rein-
forcement learning controllers is important. Principally, a
controller can be verified or even synthesized using program
verification and program synthesis. Indeed, the use of au-
tomated program reasoning techniques to aid the design of
reliable machine learning systems has risen rapidly over
the last few years. A notable example is the application of
abstract interpretation (Cousot & Cousot, 1977) to verify
robustness of convolutional neural networks (Gehr et al.,
2018). For supervised learning, the robustness property of
a neural network requires that its outputs be consistent for
narrow input spaces surrounding individual data points. A
natural extended question is that can we use program verifi-
cation and synthesis to address safe reinforcement learning
where a system includes both an environment and a con-
troller? Moreover, in case verification fails, can we exploit
verification counterexamples to synthesize a safe controller?

*Equal contribution 1Rutgers University, USA. Correspon-
dence to: Yuning Wang <yw895@rutgers.edu>, He Zhu
<hz375@cs.rutgers.edu>.

1 st Workshop on Formal Verification of Machine Learning, Bal-
timore, Maryland, USA. Colocated with ICML 2022. Copyright
2022 by the author(s).

For reinforcement learning using deep neural networks, the
primary barrier to safety verification is that repeatedly ver-
ifying a deep neural network at every timestep within a
nonlinear, closed-loop control system is computationally
infeasible. Consider the continuous MountainCar environ-
ment from OpenAI Gym visualized in Fig. 1a. A car is on
a one-dimensional track, positioned between two “moun-
tains”. The goal is to drive up the mountain on the right.
Because the car’s engine is not strong enough, a controller
has to drive the car back and forth to build up momentum
in multiple passes. Even for this simple example, verifying
a deep neural controller satisfying the goal requires huge
verification budgets. For example, Verisig (Ivanov et al.,
2018) (a state-of-the-art verification tool for neural network
controlled systems) needs more than 22 minutes to verify a
deep neural controller for MountainCar.

Recently, programmatic controllers in more structured rep-
resentations emerge as a promising solution to address the
lack of interpretability problem in deep reinforcement learn-
ing (Verma et al., 2018; Inala et al., 2020; Trivedi et al.,
2021; Qiu & Zhu, 2022). In this paper, other than inter-
pretability, we show verifiability, another key benefit of
programmatic controllers. A learned programmatic con-
troller to control the continuous MountainCar environment
learned by (Qiu & Zhu, 2022) is given in Fig. 1b. The logic
of the program is interpretable — whenever the car position
is greater than 0, the controller accelerates the force to drive
the car forward; when ever the car position is less than 0, the
controller accelerates the force to drive the car backward.
Indeed, this helps drive the car back and forth to build up
momentum. The controller solves the task and succeeds in
reaching the goal on experienced episodes.

To formally verify that the goal can be reached on all (un-
seen) episodes, we used a reachability analyzer Flow∗ (Chen
et al., 2013), a verification tool for hybrid or continuous
systems, to conduct reachability analysis to compute an
over-approximation for a reachable state set between each
time interval within the episode horizon (the controller is
applied to generate a control action at the start and end of
each time interval). The result is depicted in Fig. 1c. The
car starts at any position within [−0.6,−0.4] and eventu-
ally reaches the goal: position ≥ 0.45 while maintaining
a safety constraint on the upperbound of its speed before
reaching the goal. Verification takes only 2 minutes. The

Programmatic Reinforcement Learning with Formal Verification

0 0.45position

(a) MountainCar Gym Environment

if position > − 0.007
then 0.92←− Branch 1
else − 0.95←− Branch 2

(b) MountainCar Programmatic Controller

(c) MountainCar Reachability Analysis. The blue line rep-
resents the goal region: position ≥ 0.45. The read line
represents a safety constraint: velocity ≤ 0.07.

Figure 1. The continuous MountainCar environment, its program-
matic controller, and the reachability analysis of the controller.

example shows that it is more feasible to conduct verifica-
tion for a programmatic controller and have verification in
a programmatic reinforcement learning loop, compared to
using a deep neural network. The question remains when
verification fails – rather than retraining a new controller,
how can we leverage verification feedback to construct a
verifiably safe controller?

We present Marvel as a new verification-based controller
synthesis framework that consists of two main components,
namely controller verification, and controller synthesis.

• Controller Verification. Given an environment model
and a programmatic controller, Marvel verifies the safety
of the controller by reachability analysis over a closed-
loop system that combines the environment model and
the programmatic controller.

• Controller Synthesis. A safety counterexample detected
by Marvel is a symbolic rollout of abstract states of
the closed-loop system because it is obtained by over-
approximation. Marvel quantifies the safety properties

violation by the abstract states. The goal of controller
synthesis is to effectively minimize the amount of safety
violation to refute any safety counterexamples.

The most important feature of our algorithm is that, instead
of synthesizing a programmatic controller with concrete
examples, we use symbolic rollouts with abstract states ob-
tained by reachability analysis. Marvel reduces the amount
of safety properties violation by the abstraction states, which
approximates the worst-case safety loss, using a lightweight
gradient-descent style optimization. Marvel efficiently lever-
ages verification feedback in a learning loop to enable con-
troller safe-by-construction. Our experiments demonstrate
the benefits of integrating formal verification as part of the
training objective and using verification feedback for safe
controller synthesis.

2. Verification-guided Controller Synthesis
We formulate safe controller synthesis in the context of en-
vironment models akin to Markov Decision Process (MDP).

Environment Models. Formally, an environment is a struc-
ture M = (X,S,A, F : {S×A→ S}, S0, φsafe, φreach, R :
{S × A → R}, β) where X is a finite set of variables
interpreted over the reals R; S is an infinite set of contin-
uous real-vector environment states which are valuations
of the variables X (S ⊆ R|X|); A is a set of continuous
real-vector agent actions; F is a state transition function
that emits the next environment state given a current state s
and an agent action a; We assume that the initial states of
M are uniformly sampled from a set of environment states
S0 ⊆ S. R(s, a) is the immediate reward after transition
from an environment state s with action a and 0 < β ≤ 1 is
a reward discount factor.

Controllers. An agent of an environment M interacts with
the environment by taking actions via a controller condi-
tioned on environment states. Formally, a controller is a
(stochastic) map π : {S → A} that determines which action
the agent ought to take in a given state.

State Transitions. Particularly, we assume the transition
function F in an environment model is defined by an ordi-
nary differential equation (ODE) in the form of ẋ = f(x, a)
such that x represents state variables of dimension n and a
represents control inputs of dimension m. We assume that
the function f : Rm × Rn → Rm is Lipschitz continuous
in x and continuous in a. Given a sampling period δ, the
controller π reads the environment state si = s(iδ) at time
t = iδ (i = 0, 1, 2, . . .), and computes a control input as
ai = a(iδ) = π(s(iδ)). Then the environment evolves as
ẋ = f(x, a(iδ)) within the time slot [iδ, (i+ 1)δ] to obtain
the next state si+1 = s((i + 1)δ) at time (i + 1)δ. We
assume si (resp. si+1) as the solution of the ODE at time
t = iδ (resp. at time t = (i + 1)δ) is given by a flow

Programmatic Reinforcement Learning with Formal Verification

function1 ϕ(s0, t) : S0 × R+ → S that maps some initial
state s0 to the environment state ϕ(s0, t) at time t where
ϕ(s0, 0) = s0.

Example 2.1. Consider a Van der Pol’s oscillator system
taken from (Wang et al., 2021). The oscillator is a 2-
dimensional non-linear system. The system state transi-
tion can be expressed by the following ordinary differential
equations:

ẋ1 = x2 ẋ2 = (1− x2
1)x2 − x1 + a (1)

where (x1, x2) is the system state variables and a represents
a control action. A system as such is representative of a
number of autonomous systems, like drones, that have thus
far proven difficult for safety verification, but for which high
assurance is extremely important.

Definition 2.2 (STS – State Transition Systems). An en-
vironment M = (X,S,A, F, S0, φsafe, φreach, R, β) can be
viewed as a state transition system Fδ[·] = (F, ·, S0)
with sampling period δ, parameterized by an unknown con-
troller π : S → A, where the state transition function
F receives control actions given by the controller every δ
time and S0 is the initial state space. We explicitly model
controller deployment as Fδ[π] = (F, π, S0). Structurally,
Fδ[π] consists of T layers. Each layer at i (i ≥ 0) is a
function F i

π: λsi.F (si, π(si)), which takes as input a state
si at time t = iδ and outputs its next state si+1 at time
(i + 1)δ. Formally, layer i is a compositional function of
an initial state: Fδ

i [π] = F i
π ◦ . . . ◦ F 1

π ◦ F 0
π . Analytically,

Fδ
i [π](s0) = ϕ(s0, (i + 1)δ) where ϕ is the flow function

that compute the solutions of the ODE that constitute the
state transition function F (formally defined above).

Rollouts. Given a time horizon Tδ with δ as the sampling
period, a T -timestep rollout of a controller π is denoted
as s0, a0, s1, . . . , sT ′ ∼ π where T ′ ≤ T and si = s(iδ)
and ai = a(iδ) are the environment state and the action
taken at timestep i such that s0 ∈ S0, si+1 ∼ F (si, ai), and
ai = π(si). The aggregate reward of π is

JR(π) = Es0,a0,...,sT ′∼π[

T ′∑
t=0

βtR(si, ai)]

Controller search via reinforcement learning aims to pro-
duce a controller π that maximizes JR(π).

Safe Rollouts. In this work, an environment M includes
two safety properties φsafe and φreach as logical formulae
over environment states. They specify the intended behavior
of any agents of M . φsafe enforces that agents should only
visit safe environment states evaluated true by φsafe. For
example, an agent should remain within a safety boundary

1ϕ may be implemented using scipy.integrate.odeint (or
scipy.integrate.solve ivp).

or avoid any obstacles. Additionally, M enforces that agents
should eventually reach some environment states evaluated
true by φreach. For instance, an agent should meet some
goals.

Definition 2.3 (Safety Property). Given an environment
model, we assume S0 defines a bounded domain in the
form of an interval [x, x] where x, x ∈ R|X| are lower and
upper bounds of the initial states. Both φsafe and φreach are
quantifier-free Boolean combinations of linear inequalities
over the environment variables X:

⟨φsafe, φreach⟩ ::= ⟨P⟩ | φ ∧ φ | φ ∨ φ;

⟨P⟩ ::= A · x ≤ b where A ∈ R|X|, b ∈ R;

A state s ∈ S satisfies φsafe or φreach, denoted as s |= φsafe

or s |= φreach, iff φsafe(s) or φreach(s) is true.

Given a time horizon Tδ, a controller π is safe for a state
transition system Fδ[·] with respect to φsafe and φreach, de-
noted as Fδ[π] |= φsafe, φreach, iff, for any rollout of Fδ[π],

s0, s1, . . . sT ′−2, sT ′−1︸ ︷︷ ︸
∀t∈1...T ′−1, si|=φsafe

sT ′︸︷︷︸
sT ′ |=φreach

where T ′ ≤ T , s0 ∈ S0 and ∀i ≥ 0, si+1 = Fδ
i [π](s0).

Throughout the paper, we consider both safety specifications
φsafe and bounded-time reachability specifications φreach as
safety properties to constrain a safe controller.

Example 2.4. Continue the oscillator example. The initial
set S0 of oscillator is [−0.51,−0.49] × [0.49, 0.51]. We
specify its initial states as:

S0 ≡ {(x1, x2) | −0.51 ≤ x1 ≤ −0.49∧0.49 ≤ x2 ≤ 0.51}

The oscillator unsafe set is [−03,−0.25]× [0.2, 0.35]. The
safety property φsafe of the system is specified as:

φsafe((x1, x2)) ≡ ¬(−03 ≤ x1 ≤ −0.25∧0.2 ≤ x2 ≤ 0.35)

For this example, the goal set is [−0.05, 0.05] ×
[−0.05, 0.05]. We set the bounded-time reachability prop-
erty φreach as

φreach((x1, x2)) ≡ −0.05 ≤ x1, x2 ≤ 0.05

The goal set should be eventually reached within 120
timesteps.

An episode rollout of the oscillator environment is τ =
s0, a0, s1, . . . , aT−1, sT (T = 120) that starts from an ini-
tial state s0 ∈ S0. The sampling period δ is 0.05s and time
horizon is 6s. A controller π reads the state si = s(iδ) at
time t = iδ (i = 0, 1, 2, . . .), and computes a control action
as ai = a(iδ) = π(s(iδ)). Then the system evolves as Eq. 1
within the time slot [iδ, (i+1)δ] and yields a new state si+1.

Programmatic Reinforcement Learning with Formal Verification

E ::= C | if B then C else E

B ::= θ1 + θT2 · X ≥ 0

C ::= θ3 + θ4 · X | θc

Figure 2. A Context-free DSL Grammar for programmatic con-
trollers.

Programmatic Controllers. Previous work (Verma et al.,
2018; Qiu & Zhu, 2022) has shown that simple program-
matic controllers are more interpretable than and achieve
comparable reward performance to deep neural network con-
trollers. In this paper, we focus on programmatic controllers
as differentiable programs (Qiu & Zhu, 2022).

Our programmatic controllers follow the high-level context-
free grammar depicted in Fig. 2 where E is the start symbol,
θ represents real-valued parameters of the program. The
nonterminals E and B stand for program expressions that
evaluate to action values in Rm and Booleans, respectively,
where m is the action dimension size, θ1 ∈ R and θ2 ∈ Rn.
We represent a state input to a programmatic controller as
s = {x1 : ν1, x2 : ν2, . . . , xn} where n is the state di-
mension size and νi = s[xi] is the value of xi in s. As
usual, the unbounded variables in X = [x1, x2, . . . , xn]
are assumed to be input variables (i.e., state variables). C
is a low-level affine controller that can be called by a pro-
grammatic controller where θ3, θc ∈ Rm, θ4 ∈ Rm·n are
controller parameters. Notice that C can be as simple as
some (learned) constants θc.

The semantics of a programmatic controller in E is mostly
standard and given by a function JEK(s), defined for each
language construct. For example, JxiK(s) = s[xi] reads the
value of a variable xi in a state input s. A controller may use
an if-then-else branching construct. To avoid discontinuities
for differentiability, we interpret its semantics in terms of a
smooth approximation where σ is the sigmoid function:

Jif B then C else EK(s) =
σ(JBK(s)) · JCK(s) + (1− σ(JBK(s))) · JEK(s)

(2)

Thus, any controller programmed in this grammar becomes
a differentiable program. During execution, a programmatic
controller can invoke a set of low-level affine controllers
under different environment conditions, according to the
activation of B conditions in the program.

Programmatic Reinforcement Learning. We conduct the
programmatic reinforcement learning algorithm (Qiu & Zhu,
2022) to learn a programmatic controller. Compared to other
programmatic reinforcement learning approaches, this algo-
rithm stands out by jointly learning both program structures
and program parameters. It relaxes the expansive discrete
program structure search problem to efficiently learning the

probabilistic distribution of high-reward program structures
in the search space induced by a context-free grammar. It is
completely automated and does not require user-provided
oracles to seed imitation learning (Verma et al., 2018), or
any other guidance. We present the details of this learning
algorithm in Appendix. A.1.

Ideally, synthesizing an oscillator controller that satisfies the
safety properties φsafe and φreach can be achieved by shaping
the reward function consistent with φsafe and φreach, i.e.,
rewarding actions leading to states close to that specified in
φreach and penalizing actions leading to states violating φsafe.
On the oscillator example, the learned controller π(x1, x2)
is given in Eq. 1 depicted in Fig. 3a. However, reward
shaping does not lead to a safe oscillator controller after RL
training (see Sec. 2.1).

2.1. Controller Verification

An alternative approach to reward shaping is constrained
safe reinforcement learning (Moldovan & Abbeel, 2012;
Turchetta et al., 2016). Most safe-RL algorithms specify
safety specifications as a cost function in addition to an ob-
jective reward function (Achiam et al., 2017; Berkenkamp
et al., 2017; Dalal et al., 2018; Le et al., 2019; Wen & Topcu,
2018; Tessler et al., 2019; Yang et al., 2020). For the Oscil-
lator problem, our goal would be to train a controller π that
maximizes the cumulative object reward JR(π) and bounds
the amount of safety violation to φsafe during an episode
and φreach by the end of the episode under a threshold (e.g.
zero) on some sampled rollouts. However, there is no formal
safety guarantee on a learned controller. In our experience,
applying state-of-the-art safe-RL algorithms (Achiam et al.,
2017; Tessler et al., 2019; Yang et al., 2020) in the oscillator
environment does not even lead to a controller that satisfies
φreach on sampled episode rollouts.

In this paper, we instead formalize safe controller synthesis
as a verification-based controller optimization problem. A
synthesized controller π is certified by a program verifier
against the safety properties φsafe and φreach. The verifier
returns true if π is verified safe. Otherwise, π is optimized
to eliminate any verification counterexamples. We aim to
synthesize a controller π that is verified safe.

To verify an STS (Definition. 2.2 state transition system)
over an infinite set of initial states, we apply abstract inter-
pretation to approximate the infinite set of system behaviors.

An STS Fδ[·] is treated as a discretization of a continuous
system with sampling period δ. Discretization is needed for
learning a controller π. In verification, we consider all states
reachable by the original continuous system. Formally, we
use Si (i > 0) to represent the set of reachable states in the
time interval of [(i− 1)δ, iδ]:

Si = {ϕ(s0, t) | ∀s0 ∈ S0,∀t ∈ [(i− 1)δ, iδ]}

Programmatic Reinforcement Learning with Formal Verification

Definition 2.5 (STS Symbolic Rollout). Given a state tran-
sition system Fδ[π] = (F, π, S0) and an abstract interpreter
D, a symbolic rollout of Fδ over D is SD

0 , SD
1 , . . . where

SD
0 = α(S0) is the abstraction of the initial states S0. And

SD
i = Fδ

i
D
[π]

(
α(S0)

)
over-approximates Si all possible

states reachable from an initial state s0 ∈ S0 at timestep i
(or in the time interval of [(i− 1)δ, iδ]).

We use Flow∗ (Chen et al., 2013), an abstract reachabil-
ity analyzer for safety verification of continuous systems,
to implement Fδ

i
D to construct overapproximations of the

set of states Si at timestep i and the abstract domain D is
flowpipes. Flow∗ works by constructing flowpipe overap-
proximations of the dynamics using Taylor Models, which
scales well in practical applications.

Example 2.6. We conducted reachability analysis to com-
pute an over-approximation for a reachable state set between
each time interval within the episode horizon using the
reachability analyzer Flow∗ to verify the continuous system
composed by the oscillator ODE in Eq. 1 and the learned
controller in Fig. 3a. The result is depicted in Fig. 3b. It can
be seen that the controller does not entirely reach the goal
set.

2.2. Controller Safety Loss

An unsafe rollout of a controller violates safety properties
at some states. We define a safety loss function to quantify
the safety violation of a state.

Definition 2.7 (Safety Loss Function). For a safety property
φ over states s ∈ S, we define a non-negative loss function
L(s, φ) such that L(s, φ) = 0 iff s satisfies φ, i.e. s |= φ.
We define L(s, φ) recursively, based on the possible shapes
of φ (Definition 2.3):

• L(s,A · x ≤ b) := max(A · s− b, 0)

• L(s, φ1 ∧ φ2) := max(L(s, φ1),L(s, φ2))

• L(s, φ1 ∨ φ2) := min(L(s, φ1),L(s, φ2))

Notice that L(s, φ1 ∧ φ2) = 0 iff L(s, φ1) = 0 and
L(s, φ2) = 0, which by construction is true if both φ1

and φ2 are satisfied by s, and similarly L(φ1 ∨ φ2) = 0 iff
L(φ1) = 0 or L(φ2) = 0.

Although it is possible to learn STS controller parameters
solely via reinforcement learning using the safety loss func-
tion as a negative reward function, we do not have any
formal safety guarantee of a learned controller. Instead, we
aim to use verification feedback to improve controller safety.
To this end, we lift the safety loss function over concrete
states (Definition 2.7) to an abstract safety loss function for
over-approximated abstract states.

Definition 2.8 (Abstract Safety Loss Function). Given an
abstract state SD and a safety property φ, we define an
abstract safety loss function as

LD(S
D, φ) = max

s∈γ(SD)
L(s, φ)

The abstract safety loss function applies γ to obtain all con-
crete states represented by an abstract state SD. It measures
the worst-case safety loss of φ among all concrete states
subsumed by SD. Given an abstract domain D, we can
usually approximate the concretization of an abstract state
γ(SD) with a tight interval γI(SD). Especially, it is strait-
forward to represent flowpipes as intervals in Flow∗. Based
on the possible shape of φ, we can more efficiently compute
LD(S

D, φ) as:

• LD(S
D,A·x ≤ b) := maxs∈γI(SD)

(
max(A·s−b, 0)

)
• LD(S

D, φ1 ∧ φ2) := max(LD(S
D, φ1),LD(S

D, φ2))

• LD(S
D, φ1 ∨ φ2) := min(LD(S

D, φ1),LD(S
D, φ2))

Theorem 2.9 (Abstract Safety Loss Function Soundness).
Given an abstract state SD and a safety property φ, we
have:

LD(S
D, φ) = 0 =⇒ s |= φ ∀s ∈ γI(S

D).

We further extend the definition for the safety of an abstract
state to the safety of a symbolic rollout.

Definition 2.10 (Symbolic Rollout Safety Loss). Given an
STS Fδ[π] with sampling period δ, its T -step symbolic roll-
out SD

0 , SD
1 , SD

2 , . . . , SD
T−1, S

D
T (Definition 2.5) satisfies

the safety properties φsafe and φreach iff there exists T ′ ≤ T
such that:

SD
0 , SD

1 , SD
2 , . . . , SD

T ′−1︸ ︷︷ ︸
∀i∈1...T ′−1, LD(SD

i ,φsafe)=0

SD
T ′︸︷︷︸

LD(SD
T ′ ,φreach)=0

If the symbolic rollout is unsafe, the safety loss of Fδ[π] is:

LD(Fδ[π],φsafe, φreach) =

LD(S
D
T , φreach) +

T∑
t=1

LD(S
D
t , φsafe) (3)

Example 2.11. In Fig. 3b, there is a safety loss between
the state abstraction at the last timestep and φreach, which
we characterize as abstract safety loss, formally defined in
Definition. 2.8.

Definition 2.10 specifies a sound verification procedure for
STS, formalized below.

Programmatic Reinforcement Learning with Formal Verification

if 28.33x1 + 4.23x2 + 4.16 ≥ 0
then 6.79x1 +−8.56x2 + 0.35
else 11.01x2 + − 13.50x2 + 8.71

(a) Oscillator Programmatic Controller

abstract
Safety loss

(b) Oscillator Reachability Analysis

Figure 3. The oscillator programmatic controller and its reachabil-
ity analysis. In Fig. 3b, the red box represents the oscillator unsafe
set [−03,−0.25]× [0.2, 0.35], and the blue box depicts the goal
set is [−0.05, 0.05] × [−0.05, 0.05]. The initial set of oscillator
is [−0.51,−0.49]× [0.49, 0.51].

Theorem 2.12 (Safety Verification Soundness). For an STS
Fδ[π] deployed with a controller π, Fδ[π] |= φsafe, φreach

denotes that the deployed system satisfies safety properties
φsafe and φreach.

LD(Fδ[π], φsafe, φreach) = 0 =⇒ Fδ[π] |= φsafe, φreach.

2.3. Controller Synthesis

At a high level, our safe controller synthesis algorithm takes
as input a programmatic controller learned after reinforce-
ment learning converges and when verification fails uses ab-
stract safety losses as verification back to improve controller
safety. Intuitively, abstract states and abstract safety losses
are parameterized by controller parameters. Thus, we can
leverage a gradient-style optimization to update controller
parameters by taking steps proportional to the negative of
the gradient of the abstract safety losses. As opposed to
standard gradient descent, we optimize controllers based on
verification feedback in a proof space, favouring the verifier
directly to construct a safe controller.

Controller Synthesis in the Proof Space. Synthesizing
controllers in its proof space is critical to learning a veri-
fied controller because the verification procedure introduces
approximation error and considers states in between each
time interval, both of which cannot be observed by a re-
inforcement learning agent during training in the concrete
state space. Even a well-trained controller may fail verifica-

tion because of approximation error. Synthesis in the proof
space leverages verification feedback on either true unsafe
states or approximation error introduced by the verification
procedure to search for a provably safe controller.

In the following, we deem a controller as a function π(θ)
of its parameters θ (e.g. the parameters of a programmatic
controller in Fig. 2). We abbreviate π(θ) as πθ for simplicity.
Given an STS Fδ[πθ] with sampling period δ, the abstract
safety loss function LD of Fδ[πθ] is essentially a function
of πθ, or more specifically, a function of πθ’s parameters
θ. To reduce the abstract safety loss of πθ, we leverage a
gradient-descent style optimization to update θ by taking
steps proportional to the negative of the gradient of LD at
θ. As opposed to standard gradient descent, we optimize
πθ based on symbolic rollouts produced by the controller
in the proof space for Fδ[πθ], favouring the abstract inter-
preter (i.e., Flow∗) directly for verification-based controller
updates.

Black-box Gradient Estimation. Although a verification
procedure such as Flow∗ may not be differentiable or a third-
party implementation does not allow differentiation, we ef-
fectively estimate gradients based on random search (Mania
et al., 2018). Given an STS Fδ[πθ], at each training itera-
tion, we obtain perturbed STSs Fδ[πθ+νω] and Fδ[πθ−νω]
where we add sampled Gaussian noise ω to the current con-
troller πθ’s parameters θ in both directions and ν is a small
positive real number. By evaluating the abstract safety losses
of the symbolic rollouts of Fδ[πθ+νω] and Fδ[πθ−νω], we
update the controller parameters θ with a finite difference
approximation along an unbiased estimator of the gradient:

∇θLD ←
1

N

N∑
k=1

(
LD(Fδ[πθ+νωk

], φsafe, φreach)−
LD(Fδ[πθ−νωk

], φsafe, φreach)

)
ν

ωk

To achieve verified safety, with a verification-based con-
troller gradient ∇θLD, we update controller parameters θ
as below where η is a learning rate:

θ ← θ − η · ∇θLD

We repeatedly perform such a gradient-based update to opti-
mize controller parameters until a verifiably safe STS con-
troller is synthesized.

Such a verification-based controller update only improves
the safety of a controller. It does not incorporate the reward
function R that may additionally include performance re-
quirements. We address this shortcoming in Appendix. A.2.

3. Experimental Results
We have implemented our verification-based safe controller
synthesis algorithm in a tool called Marvel. Marvel takes

Programmatic Reinforcement Learning with Formal Verification

ReachNN∗ Marvel
layers hidden nodes time iterations time
1 3 20 26s 1 62s
2 3 20 5s 1 0.2s
3 3 20 94s 1 20s
4 3 20 8s 21 68s
5 4 100 103s 1 3s
6 4 20 1126s 2 7s

Table 1. Comparison with ReachNN∗. The dimensions of states
are from 2 to 4 for these benchmarks. Time of ReachNN∗ shows
the runtime of the reachability analysis of the tool. Time of Marvel
shows the runtime of both reachability analysis and verification-
guided controller synthesis.

a converged programmatic controller π learned by the pro-
grammatic reinforcement learning algorithm (Qiu & Zhu,
2022) as input and optimizes the controller if it fails verifi-
cation with the verification-guided training algorithm.

ReachNN∗ benchmarks. We first provide a full compar-
ison between Marvel and ReachNN∗ (Fan et al., 2020), a
state-of-the-art formal verification tool for neural network
controlled systems on all the examples in (Fan et al., 2020).
ReachNN∗ solves the reachability problem of a provided
neural network controller by verifying if the controller can
drive the system under control to reach a goal region. Mar-
vel verifies if a programmatic controller can be used to reach
the same goal region and additionally learns to improve the
controller with verification feedback if the controller fails
verification. Other than the first benchmark, Marvel runs
much faster despite having the additional learning proce-
dure. Marvel’s results are averaged over 5 random seeds.
On benchmark 4, the controller by programmatic reinforce-
ment learning cannot be verified safe and Marvel takes
averagely 21 iterations to synthesize a safe one. Our re-
sults demonstrate that it is computationally challenging to
have deep neural network verification repeatedly in a rein-
forcement learning training loop as each learning iteration
would be very expensive. On the other hand, programmatic
controllers make verification-guided training feasible.

We further evaluated Marvel on several nonlinear continu-
ous cyber-physical systems with known environment mod-
els taken from the ARCH-COMP21 competition on formal
verification of Artificial Intelligence and Neural Network
Control Systems (AINNCS) for Continuous and Hybrid
Systems Plants. We are unable to use ReachNN∗ to verify
trained neural network controllers on theses systems.

Adaptive Cruise Control. The first benchmark, Adaptive
Cruise Control, involves an ego vehicle and a lead vehi-
cle with 6 variables representing the position, velocity and
acceleration of the two vehicles. Our training objective is
to learn a controller that when the lead vehicle suddenly

reduces its speed, the ego car can decelerate to maintain a
safe distance. φsafe specifies the minimum relative distance
that a controller should maintain at each timestep as well
as an upper bound to prevent the ego car from stopping. A
rollout lasts 50 timesteps and each timestep is δ = 0.1s.
Fig. 4a depicts the training performance of Marvel where
we show the abstract safety loss at each training iteration.
Marvel learned a safe controller because it uses verification
feedback to directly optimize the worst-case safety loss in
the proof space. Previous work (Tran et al., 2020) used veri-
fication to detect safety issues for a well-trained controller
for this system. Our result shows that verification can also
be used for controller safe-by-construction.

Oscillator. This is our running example in Sec. 2. The train-
ing curve for abstract safety losses is depicted in Fig. 4b.

Tora. The Tora (translational
oscillations by a rotational ac-
tuator) model (depicted on the
right) involves a cart that is at-
tached to a wall with a spring,
and is free to move on a
friction-less surface. The cart
itself has a weight attached to
an arm inside it, which is free
to rotate about an axis. This serves as the control input for
stabilizing the cart at x = 0. The model is a 4 dimensional
system, given by the following differential equations:

ẋ1 = x2 ẋ2 = −x1 + 0.1 · sin(x3)

ẋ3 = x4 ẋ4 = a

The verification problem in the competition is that for an
initial set of x1 ∈ [0.6, 0.7], x2 ∈ [−0.7,−0.6], x3 ∈
[−0.4,−0.3], and x4 ∈ [0.5, 0.6], the system states stay
within the box x ∈ [−2, 2]4, for a bounded time window
(20s). Marvel can easily verify this property. To make the
problem more interesting, we added a new specification for
φreach as an inductive invariant, requiring that any rollout
starting from φreach eventually turns back to it and any roll-
out states must be safe (including those that temporarily
leave φreach). We set the sampling period δ = 0.01s. The
training curve of abstract safety losses is depicted in Fig. 4c.

Unicyclecar. The unicycle car benchmark can be expressed
by the following dynamics equations:

ẋ1 = x4 cos(x3) ẋ2 = x4 sin(x3)

ẋ3 = a2 ẋ4 = a1 + w

where w is a random bounded error in the range [−1e −
4, 1e − 4]. In our setting, we set the sampling period δ =
0.05s and the total time is 5s (100 control steps). The initial
set is [9.5, 9.55]× [−4.5,−4.45]× [2.1, 2.11]× [1.5, 1.51].
The goal set is [−0.6, 0.6]× [−0.2, 0.2]× [−0.06, 0.06]×

Programmatic Reinforcement Learning with Formal Verification

(a) ACC (b) Oscillator

(c) Tora (d) Unicyclecar

Figure 4. Marvel reduces the abstract safety loss on ACC, Oscillator, Tora, and Unicyclecar to zero.

[−0.3, 0.3]. The training curve of abstract safety losses is
depicted in Fig. 4d.

On all the four benchmarks, the reinforcement learning algo-
rithm (Qiu & Zhu, 2022) can obtain high reward controllers.
However, these controllers cannot be directly verified safe
due to approximation error. Marvel optimizes these con-
trollers on top of the proof space and generates verifably
safe controllers.

4. Related Work
Robust Machine Learning. Our work on safe controller
synthesis is inspired by the recent advances in verifying
neural network robustness, e.g. (Gehr et al., 2018; Anderson
et al., 2019; Singh et al., 2019; Weng et al., 2018). These
approaches apply abstract transformers to relax nonlinear-
ity of activation functions in a neural network into convex
representations, based on linear approximation (Wong &
Kolter, 2018; Weng et al., 2018; Singh et al., 2018; 2019;
Zhang et al., 2020) or interval approximation (Gowal et al.,
2018; Mirman et al., 2018). Since the abstractions are differ-
entiable, neural networks can be optimized toward tighter
concertized bounds to improve verified robustness (Mirman
et al., 2018; Balunovic & Vechev, 2020; Zhang et al., 2020;
Wang et al., 2018; Lin et al., 2020).

Recent work (Tran et al., 2020; Ivanov et al., 2018; Sun
et al., 2019; Fan et al., 2020; Dutta et al., 2019) achieved

initial results about verifying learning-enabled autonomous
systems. However, these approaches are expensive and do
not attempt to perform verification within a training loop.

Safe Reinforcement Learning. Most safe-RL algorithms
form a constraint optimization problem specifying safety
specifications as a cost function in addition to an objective
reward function (Achiam et al., 2017; Berkenkamp et al.,
2017; Dalal et al., 2018; Le et al., 2019; Wen & Topcu,
2018; Tessler et al., 2019; Yang et al., 2020). Their goal is
to train a controller that maximizes the accumulated reward
and bounds the amount of aggregate safety violation under
a threshold. In contrast, Marvel ensures that a learned con-
troller is verified safe with respect to an environment model
and can better handle reachability constraints beyond safety.

Revel (Anderson et al., 2020) introduces a mechanism to
learn neural-symbolic RL agents to ensure safe exploration
during training. It can synthesize adaptive safety shields
for complex neural network controllers. This is achieved by
projecting a neural network controller onto a search space
defined by a domain specific language in which it is possible
to construct verifiably safe programmatic controllers. Simi-
lar approaches (Verma et al., 2018; Zhu et al., 2019; Bastani
et al., 2018) synthesize a symbolic program to approximate
an RL controller based on imitation learning (Ross et al.,
2011) and show that the symbolic program has better inter-
pretability and safety. Instead, Marvel directly synthesize
safe controllers by integrating verification into training.

Programmatic Reinforcement Learning with Formal Verification

5. Conclusion
We present Marvel that bridges program synthesis and verifi-
cation for controller safe-by-construction. Our experiments
show that verification-guided controller updates can lead
to verifiably safe controllers. We plan to extend Marvel to
support controller safety during exploration. When a worst-
case environment model is provided, this can be achieved by
performing a controller update to maximize the long-term
reward and then reconciling safety violation by projecting it
back onto the verified safe space (Chow et al., 2019).

Acknowledgements
This work was supported by NSF under award CCF-SHF
2007799.

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Con-

strained policy optimization. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceed-
ings of Machine Learning Research, pp. 22–31. PMLR,
2017. URL http://proceedings.mlr.press/
v70/achiam17a.html.

Anderson, G., Pailoor, S., Dillig, I., and Chaudhuri, S.
Optimization and abstraction: a synergistic approach
for analyzing neural network robustness. In Proceed-
ings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI
2019, Phoenix, AZ, USA, June 22-26, 2019., pp. 731–744,
2019. doi: 10.1145/3314221.3314614. URL https:
//doi.org/10.1145/3314221.3314614.

Anderson, G., Verma, A., Dillig, I., and Chaudhuri, S. Neu-
rosymbolic reinforcement learning with formally veri-
fied exploration. CoRR, abs/2009.12612, 2020. URL
https://arxiv.org/abs/2009.12612.

Åström, K. J. and Hägglund, T. Automatic tuning of simple
regulators with specifications on phase and amplitude
margins. Autom., 20(5):645–651, 1984. doi: 10.1016/
0005-1098(84)90014-1. URL https://doi.org/
10.1016/0005-1098(84)90014-1.

Balunovic, M. and Vechev, M. T. Adversarial training and
provable defenses: Bridging the gap. In 8th International
Conference on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

Bastani, O., Pu, Y., and Solar-Lezama, A. Verifiable re-
inforcement learning via policy extraction. In Bengio,

S., Wallach, H. M., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada, pp. 2499–
2509, 2018.

Berkenkamp, F., Turchetta, M., Schoellig, A. P., and Krause,
A. Safe model-based reinforcement learning with stabil-
ity guarantees. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pp. 908–918, 2017.

Chen, X., Ábrahám, E., and Sankaranarayanan, S. Flow*:
An analyzer for non-linear hybrid systems. In Shary-
gina, N. and Veith, H. (eds.), Computer Aided Ver-
ification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceed-
ings, volume 8044 of Lecture Notes in Computer Sci-
ence, pp. 258–263. Springer, 2013. doi: 10.1007/
978-3-642-39799-8\ 18. URL https://doi.org/
10.1007/978-3-642-39799-8_18.

Chow, Y., Nachum, O., Faust, A., Ghavamzadeh, M.,
and Duéñez-Guzmán, E. A. Lyapunov-based safe
policy optimization for continuous control. CoRR,
abs/1901.10031, 2019. URL http://arxiv.org/
abs/1901.10031.

Cousot, P. and Cousot, R. Abstract interpretation: A uni-
fied lattice model for static analysis of programs by
construction or approximation of fixpoints. In Confer-
ence Record of the Fourth ACM Symposium on Prin-
ciples of Programming Languages, Los Angeles, Cali-
fornia, USA, January 1977, pp. 238–252, 1977. doi:
10.1145/512950.512973. URL https://doi.org/
10.1145/512950.512973.

Dalal, G., Dvijotham, K., Vecerı́k, M., Hester, T., Paduraru,
C., and Tassa, Y. Safe exploration in continuous action
spaces. CoRR, abs/1801.08757, 2018. URL http://
arxiv.org/abs/1801.08757.

Dutta, S., Chen, X., and Sankaranarayanan, S. Reach-
ability analysis for neural feedback systems using re-
gressive polynomial rule inference. In Ozay, N. and
Prabhakar, P. (eds.), Proceedings of the 22nd ACM In-
ternational Conference on Hybrid Systems: Computa-
tion and Control, HSCC 2019, Montreal, QC, Canada,
April 16-18, 2019, pp. 157–168. ACM, 2019. doi: 10.
1145/3302504.3311807. URL https://doi.org/
10.1145/3302504.3311807.

http://proceedings.mlr.press/v70/achiam17a.html
http://proceedings.mlr.press/v70/achiam17a.html
https://doi.org/10.1145/3314221.3314614
https://doi.org/10.1145/3314221.3314614
https://arxiv.org/abs/2009.12612
https://doi.org/10.1016/0005-1098(84)90014-1
https://doi.org/10.1016/0005-1098(84)90014-1
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
http://arxiv.org/abs/1901.10031
http://arxiv.org/abs/1901.10031
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
http://arxiv.org/abs/1801.08757
http://arxiv.org/abs/1801.08757
https://doi.org/10.1145/3302504.3311807
https://doi.org/10.1145/3302504.3311807

Programmatic Reinforcement Learning with Formal Verification

Fan, J., Huang, C., Chen, X., Li, W., and Zhu, Q.
Reachnn*: A tool for reachability analysis of neural-
network controlled systems. In Hung, D. V. and Sokol-
sky, O. (eds.), Automated Technology for Verification
and Analysis - 18th International Symposium, ATVA
2020, Hanoi, Vietnam, October 19-23, 2020, Proceed-
ings, volume 12302 of Lecture Notes in Computer Sci-
ence, pp. 537–542. Springer, 2020. doi: 10.1007/
978-3-030-59152-6\ 30. URL https://doi.org/
10.1007/978-3-030-59152-6_30.

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. T. AI2: safety and ro-
bustness certification of neural networks with abstract
interpretation. In 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA, pp. 3–18, 2018. doi:
10.1109/SP.2018.00058. URL https://doi.org/
10.1109/SP.2018.00058.

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin,
C., Uesato, J., Arandjelovic, R., Mann, T. A., and
Kohli, P. On the effectiveness of interval bound prop-
agation for training verifiably robust models. CoRR,
abs/1810.12715, 2018. URL http://arxiv.org/
abs/1810.12715.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. Introduction
to automata theory, languages, and computation, 3rd
Edition. Pearson international edition. Addison-Wesley,
2007. ISBN 978-0-321-47617-3.

Inala, J. P., Bastani, O., Tavares, Z., and Solar-Lezama,
A. Synthesizing programmatic policies that inductively
generalize. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=S1l8oANFDH.

Ivanov, R., Weimer, J., Alur, R., Pappas, G. J., and Lee, I.
Verisig: verifying safety properties of hybrid systems with
neural network controllers. CoRR, abs/1811.01828, 2018.
URL http://arxiv.org/abs/1811.01828.

Jang, E., Gu, S., and Poole, B. Categorical reparame-
terization with gumbel-softmax. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=rkE3y85ee.

Kakade, S. A natural policy gradient. In Proceedings of
the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, NIPS’01, pp.
1531–1538, Cambridge, MA, USA, 2001. MIT Press.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference

on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Le, H. M., Voloshin, C., and Yue, Y. Batch policy learning
under constraints. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 3703–3712. PMLR,
2019. URL http://proceedings.mlr.press/
v97/le19a.html.

Lin, X., Zhu, H., Samanta, R., and Jagannathan, S.
Art: Abstraction refinement-guided training for prov-
ably correct neural networks. In 2020 Formal Meth-
ods in Computer Aided Design, FMCAD 2020, Haifa,
Israel, September 21-24, 2020, pp. 148–157. IEEE,
2020. doi: 10.34727/2020/isbn.978-3-85448-042-6\

22. URL https://doi.org/10.34727/2020/
isbn.978-3-85448-042-6_22.

Mania, H., Guy, A., and Recht, B. Simple random search
of static linear policies is competitive for reinforcement
learning. In Bengio, S., Wallach, H. M., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada, pp. 1805–1814, 2018.

Mirman, M., Gehr, T., and Vechev, M. T. Differentiable
abstract interpretation for provably robust neural net-
works. In Dy, J. G. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 3575–3583. PMLR,
2018. URL http://proceedings.mlr.press/
v80/mirman18b.html.

Moldovan, T. M. and Abbeel, P. Safe exploration in markov
decision processes. In Proceedings of the 29th Inter-
national Conference on Machine Learning, ICML 2012,
Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc
/ Omnipress, 2012. URL http://icml.cc/2012/
papers/838.pdf.

Platt, J. C. and Barr, A. H. Constrained differential op-
timization. In Neural Information Processing Systems,
NIPS’88, pp. 612–621, 1988.

Qiu, W. and Zhu, H. Programmatic reinforcement learning
without oracles. In International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=6Tk2noBdvxt.

https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
http://arxiv.org/abs/1810.12715
http://arxiv.org/abs/1810.12715
https://openreview.net/forum?id=S1l8oANFDH
https://openreview.net/forum?id=S1l8oANFDH
http://arxiv.org/abs/1811.01828
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
http://proceedings.mlr.press/v97/le19a.html
http://proceedings.mlr.press/v97/le19a.html
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_22
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_22
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
http://icml.cc/2012/papers/838.pdf
http://icml.cc/2012/papers/838.pdf
https://openreview.net/forum?id=6Tk2noBdvxt
https://openreview.net/forum?id=6Tk2noBdvxt

Programmatic Reinforcement Learning with Formal Verification

Ross, S., Gordon, G. J., and Bagnell, D. A reduction of
imitation learning and structured prediction to no-regret
online learning. In Gordon, G. J., Dunson, D. B., and
Dudı́k, M. (eds.), Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statis-
tics, AISTATS 2011, Fort Lauderdale, USA, April 11-13,
2011, volume 15 of JMLR Proceedings, pp. 627–635.
JMLR.org, 2011. URL http://proceedings.mlr.
press/v15/ross11a/ross11a.pdf.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and
Moritz, P. Trust region policy optimization. In Bach,
F. R. and Blei, D. M. (eds.), Proceedings of the 32nd
International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of JMLR
Workshop and Conference Proceedings, pp. 1889–1897.
JMLR.org, 2015. URL http://proceedings.mlr.
press/v37/schulman15.html.

Singh, G., Gehr, T., Mirman, M., Püschel, M., and Vechev,
M. T. Fast and effective robustness certification. In Ben-
gio, S., Wallach, H. M., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada,
pp. 10825–10836, 2018.

Singh, G., Gehr, T., Püschel, M., and Vechev, M. T.
An abstract domain for certifying neural networks.
Proc. ACM Program. Lang., 3(POPL):41:1–41:30, 2019.
doi: 10.1145/3290354. URL https://doi.org/10.
1145/3290354.

Sun, X., Khedr, H., and Shoukry, Y. Formal verification
of neural network controlled autonomous systems. In
Ozay, N. and Prabhakar, P. (eds.), Proceedings of the
22nd ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2019, Montreal, QC,
Canada, April 16-18, 2019, pp. 147–156. ACM, 2019.
doi: 10.1145/3302504.3311802. URL https://doi.
org/10.1145/3302504.3311802.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Man-
sour, Y. Policy gradient methods for reinforcement learn-
ing with function approximation. In Solla, S. A., Leen,
T. K., and Müller, K. (eds.), Advances in Neural Informa-
tion Processing Systems 12, [NIPS Conference, Denver,
Colorado, USA, November 29 - December 4, 1999], pp.
1057–1063. The MIT Press, 1999.

Tessler, C., Mankowitz, D. J., and Mannor, S. Reward
constrained policy optimization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?
id=SkfrvsA9FX.

Tran, H., Yang, X., Lopez, D. M., Musau, P., Nguyen,
L. V., Xiang, W., Bak, S., and Johnson, T. T. NNV:
the neural network verification tool for deep neural net-
works and learning-enabled cyber-physical systems. In
Lahiri, S. K. and Wang, C. (eds.), Computer Aided Ver-
ification - 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceed-
ings, Part I, volume 12224 of Lecture Notes in Com-
puter Science, pp. 3–17. Springer, 2020. doi: 10.1007/
978-3-030-53288-8\ 1. URL https://doi.org/
10.1007/978-3-030-53288-8_1.

Trivedi, D., Zhang, J., Sun, S.-H., and Lim, J. J. Learning
to synthesize programs as interpretable and generaliz-
able policies. In Beygelzimer, A., Dauphin, Y., Liang,
P., and Vaughan, J. W. (eds.), Advances in Neural In-
formation Processing Systems, 2021. URL https:
//openreview.net/forum?id=wP9twkexC3V.

Turchetta, M., Berkenkamp, F., and Krause, A. Safe explo-
ration in finite markov decision processes with gaussian
processes. In Lee, D. D., Sugiyama, M., von Luxburg, U.,
Guyon, I., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pp. 4305–4313, 2016.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaud-
huri, S. Programmatically interpretable reinforcement
learning. In Dy, J. G. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 5052–5061. PMLR,
2018. URL http://proceedings.mlr.press/
v80/verma18a.html.

Wang, S., Chen, Y., Abdou, A., and Jana, S. Mixtrain: Scal-
able training of formally robust neural networks. CoRR,
abs/1811.02625, 2018. URL http://arxiv.org/
abs/1811.02625.

Wang, Y., Huang, C., Wang, Z., Wang, Z., and Zhu,
Q. Verification in the loop: Correct-by-construction
control learning with reach-avoid guarantees. CoRR,
abs/2106.03245, 2021. URL https://arxiv.org/
abs/2106.03245.

Wen, M. and Topcu, U. Constrained cross-entropy method
for safe reinforcement learning. In Bengio, S., Wallach,
H. M., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pp. 7461–7471,
2018.

http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
http://proceedings.mlr.press/v37/schulman15.html
http://proceedings.mlr.press/v37/schulman15.html
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3302504.3311802
https://doi.org/10.1145/3302504.3311802
https://openreview.net/forum?id=SkfrvsA9FX
https://openreview.net/forum?id=SkfrvsA9FX
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://openreview.net/forum?id=wP9twkexC3V
https://openreview.net/forum?id=wP9twkexC3V
http://proceedings.mlr.press/v80/verma18a.html
http://proceedings.mlr.press/v80/verma18a.html
http://arxiv.org/abs/1811.02625
http://arxiv.org/abs/1811.02625
https://arxiv.org/abs/2106.03245
https://arxiv.org/abs/2106.03245

Programmatic Reinforcement Learning with Formal Verification

Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C.,
Daniel, L., Boning, D. S., and Dhillon, I. S. Towards
fast computation of certified robustness for relu net-
works. In Dy, J. G. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 5273–5282. PMLR,
2018. URL http://proceedings.mlr.press/
v80/weng18a.html.

Winskel, G. The formal semantics of programming lan-
guages - an introduction. Foundation of computing series.
MIT Press, 1993. ISBN 978-0-262-23169-5.

Wong, E. and Kolter, J. Z. Provable defenses against
adversarial examples via the convex outer adversarial
polytope. In Dy, J. G. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings
of Machine Learning Research, pp. 5283–5292. PMLR,
2018. URL http://proceedings.mlr.press/
v80/wong18a.html.

Yang, T., Rosca, J., Narasimhan, K., and Ramadge, P. J.
Projection-based constrained policy optimization. In 8th
International Conference on Learning Representations,

ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.
net/forum?id=rke3TJrtPS.

Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R.,
Li, B., Boning, D. S., and Hsieh, C. Towards stable
and efficient training of verifiably robust neural net-
works. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=Skxuk1rFwB.

Zheng, F., Wang, Q., and Lee, T. H. On the de-
sign of multivariable PID controllers via LMI ap-
proach. Autom., 38(3):517–526, 2002. doi: 10.1016/
S0005-1098(01)00237-0. URL https://doi.org/
10.1016/S0005-1098(01)00237-0.

Zhu, H., Xiong, Z., Magill, S., and Jagannathan, S. An
inductive synthesis framework for verifiable reinforce-
ment learning. In McKinley, K. S. and Fisher, K.
(eds.), Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, PLDI 2019, Phoenix, AZ, USA, June 22-
26, 2019, pp. 686–701. ACM, 2019. doi: 10.1145/
3314221.3314638. URL https://doi.org/10.
1145/3314221.3314638.

http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/wong18a.html
http://proceedings.mlr.press/v80/wong18a.html
https://openreview.net/forum?id=rke3TJrtPS
https://openreview.net/forum?id=rke3TJrtPS
https://openreview.net/forum?id=Skxuk1rFwB
https://openreview.net/forum?id=Skxuk1rFwB
https://doi.org/10.1016/S0005-1098(01)00237-0
https://doi.org/10.1016/S0005-1098(01)00237-0
https://doi.org/10.1145/3314221.3314638
https://doi.org/10.1145/3314221.3314638

Programmatic Reinforcement Learning with Formal Verification

A. Appendix
A.1. Programmatic Reinforcement Learning

Qiu & Zhu (2022) expresses RL controllers as differentiable programs, which use symbolic language constructs to compose
a set of parameterized primitive modules. To control an agent, a programmatic controller takes an environment state as input
and computes an action as return for the agent to execute.

E ::= C | if B then C else E

B ::= θc + θT · X ≥ 0

Figure 5. A Context-free DSL Grammar for program-
matic controllers.

A programmatic controller can be viewed as a pair (E, θ), where
E is a discrete program structure and θ is a vector of real-valued
parameters of the program. A program structure E is structured
based on the context-free grammar (Hopcroft et al., 2007) of a con-
troller DSL. The context-free grammar is depicted in the standard
Backus-Naur form (Winskel, 1993) in Fig. 5. A vertical bar “|”
indicates choice. Such a grammar consists of a set of production
rules X ::= σ1 σ2 · · · σj where X is a nonterminal and σ1, · · · , σj

are either terminals or nonterminals. For example, one may expand
the nonteriminal E1 in a partial program if B1 then C1 else E1 to
if B1 then C1 else (if B2 then C2 else E2). The nonterminals E and B stand for program expressions that evaluate to
action values in Rm and Booleans, respectively, where m is the action dimension size. A state input to a programmatic
controller is represented as s = {x1 : ν1, x2 : ν2, . . . , xn} where n is the state dimension size and νi = s[xi] is the value of
xi in s. As usual, the unbounded variables in X = [x1, x2, . . . , xn] are assumed to be input variables (state variables in our
context). A terminal in this grammar is a symbol that can appear in a program’s code, e.g. the if symbol and xi.

The semantics of a program in E is mostly standard and given by a function JEK(s), defined for each DSL construct. For
example, JxiK(s) = s[xi] reads the value of a variable xi in a state input s. A controller may use an if-then-else branching
construct. To avoid discontinuities for differentiability, as discussed in Sec. 2, its semantics is encoded in terms of a smooth
approximation where σ is the sigmoid function:

Jif B then C else EK(s) = σ(JBK(s)) · JCK(s) + (1− σ(JBK(s))) · JEK(s)

Thus, any controller programmed in this grammar becomes a differentiable program. C is a controller used by a programmatic
controller. During execution, the controller can invoke a set of controllers under different environment conditions, according
to the activation of B conditions in the program. Qiu & Zhu (2022) consider three DSLs depending on how C is structured
for affine, ensemble, and PID controllers.

Affine controllers. As shown in Sec. 2, The DSL for affine controllers allows C to be expanded as an affine transformation:

CAffine ::= θc + θ · X | θc

where θ ∈ Rm·|X |, θc ∈ Rm are controller parameters. Particularly, CAffine can be as simple as some (learned) constants θc.

Ensemble controllers. The DSL supports compositionality — composing and reusing task-agnostic primitives in new
programs to solve novel problems. The DSL for ensemble controllers includes pre-acquired primitives π1, · · · , πN as
callable library functions:

Cπ ::= θ1 · π1(s) + θ2 · π2(s) + · · ·+ θN · πN (s)

Cπ explicitly compose primitive functions (e.g. running forward or jumping) hierarchically into a complex program (e.g.
jumping over multiple hurdles to reach a target) where θ1, · · · , θN ∈ R1 parameterize a primitive combination. The input
space of a primitive function can be different from that of a program (formally defined below). The semantics of Cπ is
defined as follows:

JCπK(s) =
N∑
i=0

qi · πi(s) where qi =
exp(θi/T)∑N
j=0 exp(θj/T)

Here the composition weights {qi}Ni=0 for primitive ensemble are computed using gumbel-softmax, where T is the
temperature term (Jang et al., 2017).

PID controllers. Suppose that PID control is known a priori suitable for stabilising of an RL system. One can express this
knowledge using the DSL for PID functions that allows C to be expanded as discretized, multivariable PID controllers

Programmatic Reinforcement Learning with Formal Verification

(Zheng et al., 2002):

CPID ::= PIDθP ,θI ,θD (ϵ, h, s) | θc

where θP , θI , θD ∈ Rm·n are parameters representing the proportional gain, integral gain, and derivative gain matrices
of PID control. Notice that a PID controller additionally takes a known constant ϵ that represents a fixed target for the
controller to stabilize the system under control around, and a history h of a sequence of states before the current control step.
The semantics of the controller is as follows:

JPIDθP ,θI ,θDK(ϵ, h, s) =θP · P + θI · I + θD ·D where
P = (ϵ− s) I = fold(+, ϵ− h) D = peek(h,−1)− s

(4)

In the semantics definition, P is the proportional term, I is the discrete approximation of the integral term (calculated via
a fold), and D is the finite-difference approximation of the derivative term. In line with the standard integral error reset
strategy (Åström & Hägglund, 1984), the fold function acts over a fixed-sized window on the history (e.g. the five latest
states of the history). peek(h,−1) returns the most resent state in a history h.

Problem Formulation. Qiu & Zhu (2022) frame programmatic RL as a Markov Decision Process (MDP) defined by a tuple
{S,A, T ,R} where S and A represent the environment state space and action space, T : S ×A× S → [0, 1] captures the
set of transition probabilities, andR : S ×A → R denotes the reward function. Assume S ⊇ R|X∪V| where X is the set of
input variables of a composite program (defined by a DSL) and V is the set of input variables of primitive functions. For an
affine controller, V = ∅. At time t ≥ 0, an RL agent receives an environment state st ∈ S and performs an action at ∈ A
selected by its controller π(at|st) : S → A. Based on st and at, the agent transits to receive the next state according to the
transition model T (st+1|st, at), and receives the reward R(st, at). Qiu & Zhu (2022) learn a programmatic controller π in
the DSL in Fig. 5 by jointly synthesizing the program’s structure E and optimizing the program’s parameters θ to maximize
the cumulative discounted reward Es0,a0,s1···∼π

[∑∞
0 γt ·R(st, at)

]
where γ ∈ (0, 1].

Learning Algorithm. The main idea is to relax the controller structure search space to be continuous. This amounts to
collectively optimizing the probability distribution of all program structures in the search space and assigning the the highest
probability to the structure that maximizes cumulative MDP reward.

The algorithm is not specific to a DSL. It takes as input any controller DSL with differentiable semantics and conducts
controller structure search on a program derivation tree of the DSL. Formally, a program derivation tree is T = {V, E}
where a node u ∈ V contains partial structures with missing expressions or a complete structure permissible by the DSL.
An edge (u, uE) ∈ E exists if one can obtain the structures in uE by expanding a nonterminal E within a partial structure in
u following some DSL production rules. If more than one rule can be applied to expand the nonterminal E, uE contains
more than one structure. Fig. 6 depicts a program derivation tree for the DSL in Fig. 5 where a controller C is an ensemble
controller. On the root node 0, one has two choices to expand the initial nonterminal E1 to either an ensemble controller C1

or a partial structure if B1 then C2 else E2. Node 1 thus contains two partial structures. Formally, F(uE) represents the set
of structures on a node uE .

To expand a nonterminal or a missing expression of a partial program structure, Qiu & Zhu (2022) relaxes the categorical
choice of DSL production rules into a softmax over all possible production rules for the missing expression with trainable
weights. For example, on node 1, the choices to expand E1 between the ensemble controller C1 and the conditional
branching expression are weighted by the weight matrix w1 (obtained after softmax) drawn in Fig. 6. Based on w1, one
chooses to expand E1 to the conditional branching expression on node 1. Assume E2 is further expanded on node 1 to a
conditional branching expression as well on node 5. Then again one has two choices to expand the nonterminal E3 on
node 5 weighted by w2. This time E3 is expanded to an ensemble controller C5. Formally, the weight matrix wuE

of the
incoming edge to a node uE is of the shape R|F(uE)|, and wuE

[E′] weighs the likelihood of choosing a particular structure
E′ ∈ F(uE) for expanding E.

A program derivation tree T essentially expresses all possible program derivations up to a certain bound on the depth of
program abstract syntax trees. To train structure weights, Qiu & Zhu (2022) encode a program derivation tree itself as
a differentiable program πT

θ,w that takes a state s as input. Its action output is weighted by the outputs of all programs
included in πT

θ,w, where w represents program structure weights and θ includes unknown program parameters of all the
mixed programs in the tree. The semantics computation of an expression JEK(s) in a program derivation tree πT

θ,w is
delegated to its tree node uE where the nonterminal E is expanded and the categorical choice of expanding E on uE is

Programmatic Reinforcement Learning with Formal Verification

Figure 6. Ant Cross Maze Program Derivation Tree with program input X . π⃗ refers to the primitives of Ant moving up πUP, down πDOWN,
left πLEFT and right πRIGHT that take the Ant’s own observations.

relaxed to a softmax over all possible choices:

JEK(s) = JuEK(s) JuEK(s) =
∑

E′∈F(uE)

exp(wuE
[E′])∑

E′′∈F (uE) exp(wuE
[E′′])

· JE′K(s)

Complexity. Assume that the root of T hosts the initial DSL nonterminal ET , d is the depth of T , k is the number of DSL
production rules, and m is the maximum number of nonterminals in the body of any rules. The semantics of πT

θ,w is defined
as JπT

θ,wK(s) = JET K(s). The number of DSL operations (e.g. evaluations of ensemble controllers and Boolean conditions)
invoked by JET K(·) is bounded by O((km)d).

Controller Optimization Objective. The parameters w and θ of a program derivation tree πT
θ,w can be jointly optimized

using any controller gradient methods. To obtain stochastic controller gradients, πT
θ,w(·|s) is encoded as a Gaussian controller

where the tree program outputs the action distribution mean. A separate set of parameters specify the (diagonal) distribution
covariance. Qiu & Zhu (2022) use trust region methods e.g. (Schulman et al., 2015) to maximize the “surrogate” objective
function, subject to a constraint on the size of the controller update by δ, where ρπT

θold,wold
is the discounted state visitation

frequency of πT
θold,wold

, AπT
θold,wold

is an estimator of the advantage function over a finite batch of samples from πT
θold,wold

and
θold, wold are controller parameters and structure weights before the update:

maximizeθ,w Jθold,wold(θ, w) = Es∼ρ
πT
θold,wold

,a∼πT
θold,wold

[πT
θ,w(s, a)

πT
θold,wold

(s, a)
AπT

θold,wold
(s, a)

]
subject to Es∼ρ

πT
θold,wold

[
DKL(π

T
θold,wold

(·|s)
∣∣∣∣∣∣ πT

θ,w(·|s))
]
≤ δ

(5)

Controller Parameter Optimization. The training algorithm is an iterative bilevel optimization procedure. At training
iteration k, Qiu & Zhu (2022) perform two steps. At the first step, the lower-level program parameters θ are optimized with
respect to (5), freezing the upper-level structure weights w:

θk+1 = argmax
θ

Jθk,wk
(θ, wk) s.t. Es∼ρ

πT
θk,wk

[
DKL(π

T
θk,wk

(·|s)
∣∣∣∣∣∣ πT

θk+1,wk
(·|s))

]
≤ δ (6)

Controller structure Optimization. At the second step, the upper-level structure weights w are optimized with respect to
(5), freezing the lower-level program parameters θ:

wk+1 = argmax
w

Jθk+1,wk
(θk+1, w) s.t. Es∼ρ

πT
θk+1,wk

[
DKL(π

T
θk+1,wk

(·|s)
∣∣∣∣∣∣ πT

θk+1,wk+1
(·|s))

]
≤ δ (7)

Training steps (6) and (7) are alternated across training iterations until reward convergence. They can be approximately
solved using the efficient conjugate gradient algorithm, after making a linear approximation to the objective and a quadratic
approximation to the constraint (Schulman et al., 2015). Upon convergence, based on structure weights, the algorithm
obtains a discrete program structure from πT

θ,w replacing each tree node containing multiple structures with the most likely
structure in a top-down manner. Finally, the parameters in the chosen structure are trained using RL (Schulman et al., 2015)
until convergence from the parameter values learned by the structure search process.

Programmatic Reinforcement Learning with Formal Verification

if θ1c + θT1 · X > 0
then (95% · πUP(s) + 5% · πLEFT(s))←− Branch 1
else if θ2c + θT2 · X > 0

then (95% · πLEFT(s) + 5% · πRIGHT(s))←− Branch 2
else (13% · πDOWN(s) + 87% · πRIGHT(s))←− Branch 3

X = [x, y, Gx, Gy, arctan y
x
, ∥x, y∥2]

θ1 = [− 2.052, 0.049, 0.440, 0.181, 0.241, 1.443], θ1c = −0.202
θ2 = [1.333, 2.204,−2.2171, 2.132, 1.878, 0.331], θ2c = −0.416

Figure 8. An Ant Cross Maze program Pcross with three branches. A program input X includes current Ant position x, y along
with the target location Gx, Gy (sampled from one of the three goals in Fig. 7). arctan y

x
and ∥x, y∥2 are functions of x and y. Each

branch composes primitive functions: πUP, πDOWN, πLEFT, and πRIGHT. Composition weights are shown in percentage.

(a) Branch 1 activation,
(Gx, Gy) = (12, 0)

(b) Branch 1 activation,
(Gx, Gy) = (6, -6)

(c) Branch 2 activation,
(Gx, Gy) = (6, -6)

(d) Branch 3 activation,
(Gx, Gy) = (6, -6)

Figure 9. Branch activation as functions of Ant position (x, y) for program Pcross.

Figure 7. Ant Cross Maze

Program Interpretability. Thanks to the structured and symbolic representation of
a learned programmatic controller, it is highly interpretable. For example, consider
an Ant Cross Maze environment depicted in Fig. 7. The maze contains three possible
goal positions and one would be randomly selected at each time. In this environment,
the task for a quadruped MuJoCo Ant is to reach the selected location by navigating
through the maze staring from an initial position on the bottom and without collision
or crash. Consider the DSL with ensemble controllers Cπ for this task. Assume it
includes four basic primitive functions (which are pretrained) for moving the Ant
up πUP, down πDOWN, left πLEFT, and right πRIGHT.

Fig. 8 depicts a synthesized program Pcross with three branches for solving the Ant
Cross Maze environment. As specified in Equation 2, the semantics of a branching
construct is approximated by the sigmoid function σ. The value of the predicate in a
Boolean condition determines the activation of the controller guarded by the Boolean
condition. At each state, branch activation determines the strength of each of the
controllers in the program. For example, the activation of branch 1 is σ(θ1c + θT1 · X), and the activation of branch 2 is
(1− σ(θ1c + θT1 · X)) · σ(θ2c + θT2 · X).

Fig. 9a depicts the activation of branch 1 as a function of (x, y) when the goal to reach is sampled at Gx = 12,Gy = 0. The
degree of activation (yellow) is close to 1 on all states under (12, 0) indicating that the ensemble controller at branch 1 is
used to drive the Ant up to the goal. Indeed, according to the distribution of each primitive function at branch 1, the effect of
πUP dominates. Fig. 9b, Fig. 9c, and Fig. 9d depict the activation of all three branches when the goal is at Gx = 6,Gy = −6.
The program can be interpreted as branch 1 (where πUP dominates) and branch 3 (where πRIGHT dominates) are activated in
the yellow areas of Fig. 9b and Fig. 9d respectively. This allows the Ant to make a curved up and right move to the goal
(branch 2 is not activated during execution for this goal).

Programmatic Reinforcement Learning with Formal Verification

A.2. Integrating Both Safety and Rewards

We integrate reward signals R from environments to achieve both controller reward performance and controller safety:

max
θ

JR(πθ)

subject to LD(G[πθ], φsafe, φreach) = 0 (8)

where an environment model G is fitted with respect to a current controller πθ. A constrained optimization problem as such
can be solved by the Lagrangian method (Platt & Barr, 1988) that firstly reduces the constrained problem to an equivalent
unconstrained optimization problem with an adaptive penalty coefficient λ:

max
θ

min
λ≥0

JR(πθ)− λLD(G[πθ], φsafe, φreach) (9)

The Lagrangian method then solves the unconstrained optimization problem by performing gradient descent on λ with a
small fixed learning rate η (e.g. η = 5e−2):

λ← λ− η ·
(
− LD(G(πθ), φsafe, φreach)

)
and performing gradient ascent on θ to maximize the cumulative reward JR(πθ) and the negative abstract safety loss
L(G(πθ), φsafe, φreach).

To simplify the presentation, in the following we fix λ = 1 as a constant and only show how to optimize controller parameters
θ. Specifically, to optimize the cumulative reward JR(πθ), we consider the standard model-free vanilla controller gradient
∇θJ

R(πθ) (Sutton et al., 1999). This method directly optimizes controller parameters θ to maximize the cumulative reward
using local search via the samples of the controller πθ. To optimize the abstract safety loss LD(G(πθ), φsafe, φreach), we use
the verification-based controller gradient∇θLD defined in Sec. 2.3.

With the controller gradients, we could simply update controller parameters θ using the fixed learning rate η:

θ ← θ + η ·
(
∇θJ

R(πθ)−∇θLD(G(πθ), φsafe, φreach)
)

However, a controller update as such can change the behavior of πθ arbitrarily different from the old one at each training
iteration. Because the fitted TVLG dynamics G[·] is a local model and only valid in a local region of the state space around
the sampled rollouts of the old controller, an unconstrained parameter update can cause the new controller to visit part of
the state space where G[·] is arbitrarily incorrect and unstable, leading to divergence. Therefore, our approach restricts
controller update at each iteration to maintain the validity of a fitted time-varying linear model G[·]. Inspired by a few
recently developed RL algorithms (Kakade, 2001; Schulman et al., 2015), we limit the controller change by imposing a
constraint on the KL-divergence between the old controller πθold and the new controller πθ by a threshold ξ (e.g. ξ = 1e−2):

max
θ

JR(πθ)− LD(G[πθ], φsafe, φreach)

subject to Es∼d
πθold [DKL(πθold(·|s) || πθ(·|s))] ≤ ξ (10)

where dπθold is the state distribution under the controller πθold estimated in the actual (true) environment by sampling2 and
the KL divergence DKL is the expectation of the logarithmic difference between the probabilities of πθold and πθ:

DKL(πθold || πθ) = Ex∼πθold

(
log

πθold(x)

πθ(x)

)
here the expectation is taken using the probabilities of πθold . Intuitively, DKL measures how the probability distribution πθold

is different from a new controller πθ.

The constrained optimization problem (10) can be analytically solved (similar to (Kakade, 2001; Schulman et al., 2015)).
We update θ as follows. The derivation of this solution is explained below.

θ = θold +

√
2ξ

gTH(θold)−1g
H(θold)

−1g (11)

where g =
(
∇θJ

R(πθ)−∇θLD(G[πθ], φsafe, φreach)
)
|θ=θold

2dπ(s) = P (s0 = s) + βP (s1 = s) + β2P (s2 = s) + · · · where s0 ∈ S0, and at ∼ π(·|st), st+1 ∼ P (st+1|st, at) ∀t ≥ 0. If
β = 1, dπθold

is just the state visit frequency under πθold . P is the true transition probability distribution.

Programmatic Reinforcement Learning with Formal Verification

H(θold) is a Hessian matrix that measures the second-order derivative of the log probability of πθold (after extending the
KL divergence definition). Importantly, as opposed to improving controller parameters simply using the abstract safety
loss gradient ∇θLD and the controller gradient ∇θJ

R, the update rule in Equation (11) uses an additional KL divergence
threshold ξ to restrain controller updates that can turn destructive to the validity of the fitted TVLG model G[·]. For sample
efficiency, since H(θold) is estimated based on sampled states from the old controller πθold , we can reuse the samples used to
fit the TVLG model G[·] for estimating H(θold).

In the following, we abbreviate LD(G[πθ], φsafe, φreach) as a function LD
G (θ) parameterized by controller parameters θ to

ease the presentation. Essentially the abstract safety loss of a controller with an abstract interpreter D depends upon its
parameters. Similarly, we abbreviate JR(πθ) as a function JR(θ) parameterized by controller parameters θ. To solve the
constrained optimization problem (10), similar to (Schulman et al., 2015), we use a linear approximation to LD

G (θ) and
JR(θ) and a quadratic approximation to the DKL constraint, based on first-order Taylor expansion:

LD
G (θ) ≈ LD

G (θold) +∇θLD
G (θ)|θ=θold · (θ − θold) (12)

JR(θ) ≈ JR(θold) +∇θJ
R(θ)|θ=θold · (θ − θold) (13)

DKL(πθold || πθ) ≈ DKL(πθold || πθold) +

∇θDKL(πθold || πθ)|θ=θold · (θ − θold) +

1

2
(θ − θold)

T · ∇2
θDKL(πθold || πθ)|θ=θold · (θ − θold) (14)

By canceling the constants in (12), (13), and (14), the optimization problem (10) can be approximated as:

max
θ
∇θJ

R(θ)|θ=θold · (θ − θold)−∇θLD
G (θ)|θ=θold · (θ − θold) (15)

s.t.
1

2
(θ − θold)

T ·H(θold) · (θ − θold) ≤ ξ

where H(θold) = Es∼dπθold
∇2

θDKL(πθold(·| s) || πθ(·| s))|θ=θold

H(θold) is a Hessian matrix that measures the second-order derivative of the log probability of πθold (after extending the KL
divergence definition).

Since H is the Fisher Information matrix, which automatically guarantees it is positive semi-definite. Therefore, it is a
convex program with quadratic inequality constraints. Hence if the primal problem has a feasible point, then Slaters condition
is satisfied and strong duality holds. Let θ∗ and λ∗ denote the solutions to the primal and dual problems, respectively. In
addition, the primal objective function is continuously differentiable. Hence the Karush-Kuhn-Tucker (KKT) conditions are
necessary and sufficient for the optimality of θ∗ and λ∗. In the following, let

g = ∇θJ
R(θ)|θ=θold −∇θLD

G (θ)|θ=θold

We now form the Lagrangian to solve (15):

L(θ, λ) = −gT (θ − θold) + λ(
1

2
(θ − θold)

T ·H(θold) · (θ − θold)− ξ)

And we have the following KKT conditions:

−g + λ∗Hθ∗ − λ∗Hθold = 0 ∇θL(θ∗, λ∗) = 0 (16)
1

2
(θ∗ − θold)

TH(θ∗ − θold)− ξ = 0 ∇λL(θ∗, λ∗) = 0 (17)

1

2
(θ∗ − θold)

TH(θ∗ − θold)− ξ ≤ 0 primal constraints (18)

λ∗ ≥ 0 dual constraints (19)

λ∗(
1

2
(θ∗ − θold)

TH(θ∗ − θold)− ξ) = 0 complementary slackness (20)

By (16), we have θ∗ = θold +
1
λ∗H

−1g. And by plugging (16) into (17), we have λ∗ =
√

gTH−1g
2ξ . Hence we have our

Programmatic Reinforcement Learning with Formal Verification

optimal solution:

θ = θ∗ = θold +

√
2ξ

gTH−1g
H−1g, (21)

which also satisfied (18), (19), and (20). Putting everything together, we derive

θ = θold +

√
2ξ

gTH(θold)−1g
H(θold)

−1g

where g = ∇θJ
R(θ)|θ=θold −∇θLD

G (θ)|θ=θold

