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Abstract
We consider the problem of certifying the robust-
ness of deep neural networks against real-world
distribution shifts. To do so, we bridge the gap
between hand-crafted specifications and realistic
deployment settings by proposing a novel neural-
symbolic verification framework, in which we
train a generative model to learn perturbations
from data and define specifications with respect
to the output of the learned model. A unique
challenge arising from this setting is that existing
verifiers cannot tightly approximate sigmoid ac-
tivations, which are fundamental to many state-
of-the-art generative models. To address this
challenge, we propose a general meta-algorithm
for handling sigmoid activations which leverages
classical notions of counter-example-guided ab-
straction refinement. The key idea is to “lazily”
refine the abstraction of sigmoid functions to ex-
clude spurious counter-examples found in the
previous abstraction, thus guaranteeing progress
in the verification process while keeping the
state-space small. Experiments on the MNIST
and CIFAR-10 datasets show that our framework
significantly outperforms existing methods on a
range of challenging distribution shifts.

1. Introduction
Despite remarkable performance in various domains, it is
well-known that deep neural networks (DNNs) are sus-
ceptible to seemingly innocuous variation in their input
data. Indeed, recent studies have conclusively shown that
DNNs are vulnerable to a diverse array of changes rang-
ing from norm-bounded perturbations (Goodfellow et al.,
2014; Madry et al., 2017; Wong & Kolter, 2018; Zhang
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et al., 2019; Kannan et al., 2018; Moosavi-Dezfooli et al.,
2016; Robey et al., 2021a) to distribution shifts in weather
conditions in perception tasks (Robey et al., 2020; Wong
& Kolter, 2020; Hendrycks & Dietterich, 2019; Hendrycks
et al., 2020; Koh et al., 2020). To address these concerns,
there has been growing interest in using formal methods to
obtain rigorous verification guarantees for neural networks
with respect to particular specifications (Katz et al., 2017;
2019; Tjeng et al., 2017; De Palma et al., 2021; Bunel et al.,
2020b; Xu et al., 2020b; Ehlers, 2017; Botoeva et al., 2020;
Anderson et al., 2019; Khedr et al., 2020; Fischetti & Jo,
2017; Bunel et al., 2020a; Dvijotham et al., 2018; 2020; Wu
et al., 2022; Ferrari et al., 2022; Tran et al., 2020; Huang
et al., 2017; Singh et al., 2019b;a; Lyu et al., 2020; Zhang
et al., 2018; Wang et al., 2018b;a; Dutta et al., 2018; Weng
et al., 2018; Salman et al., 2019; Tjandraatmadja et al.,
2020; Raghunathan et al., 2018; Xiang et al., 2018; Gehr
et al., 2018; Wang et al., 2021; Singh et al., 2019c; Boopa-
thy et al., 2019; Singh et al., 2018; Müller et al., 2021; El-
boher et al., 2020; Ryou et al., 2021). A key component of
verification is devising specifications that accurately char-
acterize the expected behavior of a DNN in realistic de-
ployment settings. Designing such specifications is crucial
for ensuring that the corresponding formal guarantees are
meaningful and practically relevant.

By and large, the DNN verification community has fo-
cused on specifications described by simple analytical ex-
pressions. This line of work has resulted in a set of tools
which cover specifications such as certifying the robustness
of DNNs against norm-bounded perturbations (Singh et al.,
2019b; Katz et al., 2019; Henriksen & Lomuscio, 2020;
Wang et al., 2021). However, the practical implications of
these specifications are unclear beyond the realm of mali-
cious security threats (Biggio et al., 2013), as distribution
shifts often cannot be described via a set of simple equa-
tions. While progress has been made toward broadening
the range of specifications (Balunović et al., 2019; Pater-
son et al., 2021; Mohapatra et al., 2019; Katz et al., 2021),
it remains a crucial open challenge to narrow the gap be-
tween formal specifications and distribution shifts.

Outside of the verification community, a simultaneous
line of work has shown that deep generative models
can be trained to provably capture real-world distribu-
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tion shifts (Robey et al., 2020; Wong & Kolter, 2020;
Gowal et al., 2020; Robey et al., 2021b). In particular,
this body of work has shown that latent variables in gen-
erative adversarial networks (Robey et al., 2020; Gowal
et al., 2020) and variational autoencoders (Wong & Kolter,
2020) can capture relevant shifts in applications such as
graph contrastive learning (You et al., 2021), medical imag-
ing (Robey et al., 2021b; Bashyam et al., 2022), and au-
tonomous perception (Robey et al., 2020; Wong & Kolter,
2020). And while this progress has resulted in several
robust training algorithms, the few verification schemes
that leverage these tools assume that the generative mod-
els are piecewise-linear functions (Katz et al., 2021; Mir-
man et al., 2021), thereby excluding state-of-the-art archi-
tectures which heavily rely on transcendental activations
(e.g., sigmoid) (Huang et al., 2018).

To bridge the gap between formal verification tools and
application-driven deployment settings, in this paper we in-
troduce a new framework for verifying the robustness of
DNNs against real-world distribution shifts. Distribution
shifts often cannot be described by simple analytical ex-
pressions; in the absence of such expressions, our key in-
sight is to use deep generative models—trained to prov-
ably capture distribution shifts—to define specifications in
a neural-symbolic verification framework (Xie et al., 2022).
To support state-of-the-art generative models in this frame-
work, we propose a novel abstraction-refinement algorithm
for handling transcendental activation functions. We show
that this innovation significantly boosts verification preci-
sion when compared to existing approaches.

Contributions. Our contributions are as follows:

• We introduce a new framework for verifying DNNs
against real-world distribution shifts.

• We are the first to incorporate deep generative mod-
els that capture distribution shifts—e.g. changes in
weather conditions or lighting in perception tasks—
into verification specifications.

• We propose a novel abstraction-refinement strategy for
transcendental activation functions.

• We show that our verification techniques are signifi-
cantly more precise than existing techniques on a range
of challenging real-world distribution shifts on MNIST
and CIFAR-10.

2. Problem formulation
In this section, we formally define the problem of verifying
the robustness of DNN-based classifiers against real-world
distribution shifts. The key step in our problem formula-
tion is to propose a unification of logical specifications with
deep generative models which capture distribution shifts.

Neural network classification. We consider classification

tasks where the data consists of instances x ∈ X ⊆ Rd0

and corresponding labels y ∈ [k] := {1, . . . , k}. The goal
of this task is to obtain a classifier Cf : Rd → [k] such
that Cf can correctly predict the label y of each instance
x for each (x, y) pair. In this work, we consider classifiers
Cf (x) defined by Cf (x) = argmaxj∈[k] fj(x), where we
take f : Rn0 → Y ⊆ RdL (with dL = k) to be an L-
layer feed-forward neural network with weights and biases
W(i) ∈ Rdi×di−1 and b(i) ∈ Rdi for each i ∈ {1, ..., L}
respectively. More specifically, we let f(x) = n(L)(x) and
recursively define

n(i)(x) = W(i)
(
n̂(i−1)(x)

)
+ b(i)

n̂(i)(x) = ρ
(
n(i)(x)

)
and n̂(0)(x) = x

Here, ρ is a given activation function (e.g., ReLU, sigmoid,
etc.) and n(i) and n̂(i) represent the pre- and post-activation
values of the ith layer of f respectively.

Perturbation sets and logical specifications. The goal of
DNN verification is to determine whether or not a given
logical specification regarding the behavior of a DNN holds
in the classification setting described above. Throughout
this work, we use the symbol Φ to denote such logical spec-
ifications, which define relations between the input and out-
put of a DNN, i.e., Φ := (Φin(x)⇒ Φout(y)). For example,
given a fixed instance-label pair (x, y), the specification

Φ := (||x− x||p ≤ ϵ =⇒ Cf (x) = y) (1)

captures the property of robustness against norm-bounded
perturbations by checking whether all points in an ℓp-norm
ball centered at x are classified by Cf as having the label
y.

Although the study of specifications such as (1) has re-
sulted in numerous verification tools, there are many prob-
lems which cannot be described by this simple analytical
model, including settings where data varies due to distri-
bution shifts. For this reason, it is of fundamental interest
to generalize such specifications to capture more general
forms of variation in data. To do so, we consider abstract
perturbation sets S(x), which following (Wong & Kolter,
2020) are defined as “a set of instances that are considered
to be equivalent to [a fixed instance] x.” An example of an
abstract perturbation set is illustrated in Figure 1b, wherein
each instance in S(x) shows the same street sign with vary-
ing levels of snow. Ultimately, as in the case of norm-
bounded robustness, the literature surrounding abstract per-
turbation sets has sought to train classifiers to predict the
same output for each instance in S(x) (Robey et al., 2020;
Wong & Kolter, 2020; Gowal et al., 2020).

Learning perturbation sets from data. Designing ab-
stract perturbation sets S(x) which accurately capture real-
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(a) Norm-bounded perturbation sets. The majority of the veri-
fication literature has focused on a limited set of specifications,
such as ℓp-norm bounded perturbations, wherein perturbations
can be defined by simple analytical expressions.

(b) Real-world perturbation sets. Most real-world perturbations
cannot be described by simple analytical expressions. For exam-
ple, obtaining a simple expression for a perturbation set S(x) that
describes variation in snow would be very challenging.

Figure 1: Perturbation sets. We illustrate two examples of perturbation sets S(x).

istic deployment settings is critical for providing meaning-
ful guarantees. Recent advances in the generative modeling
community have shown that distribution shifts can be prov-
ably captured by deep generative models. The key idea in
this line of work is to parameterize perturbation sets S(x)
in the latent space Z of a generative model G(x, z), where
G takes as input an instance x and a latent variable z ∈ Z .
Prominent among such works is (Wong & Kolter, 2020),
wherein the authors study the ability of conditional varia-
tional autoencoders (CVAEs) to capture shifts such as vari-
ation in lighting and weather conditions in images. In this
work, given a CVAE parameterized byG(x, µ(x)+zσ(x)),
where µ(x) and σ(x) are neural networks, the authors con-
sider abstract perturbation sets of the form

S(x) := {G(x, µ(x) + zσ(x)) : ||z|| ≤ δ}. (2)

Under favorable optimization conditions, the authors
of (Wong & Kolter, 2020) prove that CVAEs satisfy two
statistical properties which guarantee that the data belong-
ing to learned perturbation sets in the form of (2) pro-
duce realistic approximations of the true distribution shift
(c.f. Assumption 1 and Thms. 1 and 2 in (Wong & Kolter,
2020)). To further verify this theoretical evidence, we show
that this framework successfully captures real-world shifts
on MNIST and CIFAR-10 in Figure 2.

Verifying robustness against learned distribution shifts.
To bridge the gap between formal verification methods and
perturbation sets which accurately capture real-world dis-
tribution shifts, our approach in this paper is to incorporate
perturbation sets parameterized by deep generative models
into verification routines. We summarize this setting in the
following problem statement.

Problem 2.1. Given a DNN-based classifier Cf (x), a fixed
instance-label pair (x, y), and an abstract perturbation set

S(x) in the form of (2) that captures a real-world distri-
bution shift, our goal is to determine whether the following
neural-symbolic specification holds:

Φ := (x ∈ S(x) =⇒ Cf (x) = y) (3)

In other words, our goal is to devise methods which verify
whether a given classifier Cf outputs the correct label y for
each instance in a perturbation set S(x) parameterized by
a generative model G.

3. Technical approach and challenges
The high-level idea of our approach is to consider the fol-
lowing equivalent specification to (3), wherein we absorb
the generative model G into the classifier C:

Φ := (||z|| ≤ δ =⇒ CQz (x) = y) (4)

Here, Qz(x) = (f ◦ G)(x, µ(x) + zσ(x)) is the con-
catenation of the deep generative model G with the DNN
f . While this approach has clear parallels with verifica-
tion schemes within the norm-bounded robustness litera-
ture, there is a fundamental technical challenge: state-of-
the-art generative models heavily rely on sigmoid activa-
tions to produce realistic data; however, the vast majority of
the literature concerning DNN verification considers DNNs
that are piece-wise linear functions. For completeness, be-
low we provide a general definition of sigmoid activations.

Definition 3.1 (Inflection point). A function f : R → R
has an inflection point at η iff it is twice differentiable at η,
f ′′(η) = 0, and f ′ changes sign as its argument increases
through η.

Definition 3.2 (Sigmoid). A sigmoid function ρ : R→ R is
a bounded, twice differentiable function which has a non-
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(a) MNIST samples. From top to bottom, the distribution shifts
are scale, brightness, contrast, and Gaussian blur.

(b) CIFAR-10 samples. The distribution shifts for these sets are
brightness (top) and fog (bottom).

Figure 2: Samples from learned perturbation sets. We show samples from two learned perturbation sets S(x, δ) on the MNIST and
CIFAR-10 datasets. Samples were generated by gridding the latent space of S(x, δ).

negative derivative at each point and has exactly one in-
flection point.

Verification with sigmoid activations. There are a
few verification techniques that can handle sigmoid func-
tions (Singh et al., 2019b; Zhang et al., 2018; Henrik-
sen & Lomuscio, 2020; Müller et al., 2021; Xu et al.,
2020b;a). They rely on abstraction, which builds an over-
approximation of the network behavior, but suffer from im-
precision, especially when verifying a neural network on
large input domains. Fig. 3 shows an abstraction of the
popular logistic activation function σ(x) = 1

1+e−x . If
the specification holds on the abstracted network (where
the sigmoid activation is abstracted with the convex re-
gion), then it holds on the original network. However, if
a counter-example to the specification is found when using
the abstraction, it may be spurious (as shown in the fig-
ure), and the specification might still hold on the precise,
un-abstracted network.

Figure 3: An abstraction of the sigmoid
activation function.

This spurious
behavior of ex-
isting verifiers
demonstrates that
there is a need
for refinement
of abstraction-
based methods
to improve the
precision. For
piecewise-linear
activations, there
is a natural re-
finement step:
case splitting on the activation phases. However, in the
case of sigmoid activations, it is less clear how to perform
this refinement, because if the refinement is performed too
aggressively, the state space may explode and exceed the
capacity of current verifiers. To address this technical chal-

Algorithm 1 VNN-CEGAR(M := ⟨V,X ,Y, ϕaff , ϕρ⟩,Φ)
1: M ′ ← Abstract(M)
2: while true do
3: ⟨α, proven⟩ ← Prove(M ′,Φ)
4: if proven then
5: return true
6: ⟨M ′, refined⟩ ← Refine(M ′,Φ, α)
7: if ¬refined then
8: return false

lenge, we propose a counter-example guided refinement
strategy for sigmoid activation functions which is based
on the CEGAR approach (Clarke et al., 2000). Our main
idea is to limit the scope of the refinement to the region
around a specific counter-example. In the next section, we
formally describe our proposed framework and we show
that it can be extended to other transcendental activation
functions (e.g., softmax).

4. A CEGAR framework for sigmoid
activations

In this section, we formalize our meta-algorithm for pre-
cisely reasoning about DNNs with sigmoid activations,
which is based on the CEGAR framework (Mann et al.,
2021). We first present the general framework and then
discuss concrete instantiations of the sub-procedures.

Verification preliminaries. Our procedure operates on tu-
ples of the form M := ⟨V,X ,Y, ϕaff , ϕρ⟩. Here, V is a
set of real variables with X ,Y ⊆ V and ϕaff and ϕρ are
sets of formulas over V (when the context is clear, we also
use ϕaff and ϕρ to mean the conjunctions of the formu-
las in those sets). A variable assignment α : V 7→ R
maps variables in V to real values. We consider properties
of the form Φ := (Φin(X ) ⇒ Φout(Y)), where Φin(X )
and Φout(Y) are linear arithmetic formulas over X and Y ,
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and we say that Φ holds on M if and only if the formula
ψ := ϕaff ∧ϕρ ∧Φin(X ) ∧ ¬Φout(Y) is unsatisfiable. We
use M |= Φ to denote that Φ holds (ψ is unsatisfiable),
M [α] |= ¬Φ to denote that Φ does not hold and is fal-
sified by α (ψ can be satisfied with assignment α), and
M [α] |= Φ to denote that Φ is not falsified by α (α does
not satisfy ψ). Given this notation, we define a sound ab-
straction as follows:

Definition 4.1 (Sound abstraction). Given a tuple M :=
⟨V,X ,Y, ϕaff , ϕρ⟩ and a property Φ = (Φin(X) ⇒
Φout(Y )), we say the tuple M ′ := ⟨V ′ ⊇
V,X ,Y, ϕ′aff , ϕ′ρ⟩ is a sound abstraction of M if M ′ |= Φ
implies that M |= Φ.

Verifying DNNs. Given a DNN f , we construct a tuple
Mf as follows: for each layer i in f , we let v(i) be a vec-
tor of di variables representing the pre-activation values in
layer i, and let v̂(i) be a similar vector representing the
post-activation values in layer i. Let v̂(0) be a vector of
n0 variables from V representing the inputs. Then, let V be
the union of all these variables, and let X and Y be the in-
put and output variables, respectively; that is, X consists of
the variables in v̂(0), and Y contains the variables in v(L).
ϕaff and ϕρ capture the affine and non-linear (i.e., activa-
tion) transformations in the neural network, respectively.
In particular, for each layer i, ϕaff contains the formulas
v(i) = W(i)v̂(i−1) + b(i), and ϕρ contains the formulas
v̂(i) = ρ(v(i)).

Algorithm 1 presents a high-level CEGAR loop for check-
ing whether M |= Φ. It is parameterized by three func-
tions. The Abstract function produces an initial sound
abstraction of M . The Prove function checks whether
M ′ |= Φ. If so (i.e., the property Φ holds forM ′), it returns
with proven set to true. Otherwise, it returns an assignment
α which constitutes a counter-example. The final function
is Refine, which takes M and M ′, the property P , and the
counterexample α for M ′ as inputs. Its job is to refine the
abstraction until α is no longer a counter-example. If it suc-
ceeds, it returns a new sound abstraction M ′. It fails if α is
an actual counter-example for the original M . In this case,
it sets the return value refined to false. Throughout its ex-
ecution, the algorithm maintains a sound abstraction of M
and checks whether the property Φ holds on the abstraction.
If a counter-example α is found such that M ′[α] |= ¬Φ,
the algorithm uses it to refine the abstraction so that α is no
longer a counter-example. The following theorem follows
directly from Def. 4.1:

Theorem 4.2 (CEGAR is sound). Alg. 1 returns true only
if M |= Φ.

4.1. Choice of the underlying verifier and initial
abstraction

The Prove function can be instantiated with an exist-
ing DNN verifier. The verifier is required to (1) han-
dle piecewise-linear constraints; and (2) produce counter-
examples. There are many existing verifiers that meet these
requirements (Singh et al., 2019b; Katz et al., 2019; Hen-
riksen & Lomuscio, 2020; Wang et al., 2021). To ensure
that these two requirements are sufficient, we also require
that ϕ′aff and ϕ′ρ only contain linear and piecewise-linear
formulas.

The Abstract function creates an initial abstraction. For
simplicity, we assume that all piecewise-linear formulas are
unchanged by the abstraction function. For sigmoid acti-
vations, we use piecewise-linear over-approximations. In
principle, any sound piecewise-linear over-approximation
of the sigmoid function could be used. One approach is
to use a fine-grained over-approximation with piecewise-
linear bounds (Sidrane et al., 2022). While this approach
can arbitrarily reduce over-approximation error, it might
easily lead to an explosion of the state space when rea-
soning about generative models due to the large number
of transcendental activations (equal to the dimension of the
generated image) present in the system. One key insight of
CEGAR is that it is often the case that most of the com-
plexity of the original system is unnecessary for proving
the property and eagerly adding it upfront only increases
the computational cost. We thus propose starting with a
coarse (e.g., convex) over-approximation and only refining
with additional piecewise-linear constraints when neces-
sary. Suitable candidates for the initial abstraction of a sig-
moid function include the abstraction proposed in (Zhang
et al., 2018; Singh et al., 2019b; Henriksen & Lomuscio,
2020; Müller et al., 2021; Xu et al., 2020b), which consid-
ers the convex relaxation of the sigmoid activation.

4.2. Abstraction Refinement for the sigmoid activation
function.

We now focus on the problem of abstraction refinement for
models with sigmoid activation functions. Suppose that an
assignment α is found by Prove such that M ′[α] |= ¬Φ,
but for some neuron with sigmoid activation ρ, represented
by variables (v, v̂), α(v̂) ̸= ρ(α(v)). The goal is to re-
fine the abstraction M ′, so that α is no longer a counter-
example for the refined model. Here we present a refine-
ment strategy that is applicable to any sound abstraction of
sigmoid functions. We propose using two linear segments
to exclude spurious counter-examples. The key insight is
that this is always sufficient for ruling out any counter-
example. We assume that ϕ′aff includes upper and lower
bounds for each variable v that is an input to a sigmoid
function. In practice, bounds can be computed with bound-
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l < η, u > η
ρ′′(p) > 0

l < η, u > η
ρ′′(p) = 0

l < η, u > η
ρ′′(p) < 0

l > η ∨ u < η
ρ′′(p) ≤ 0

l > η ∨ u < η
ρ′′(p) > 0

β ρ′(p) ρ′(p)

ρ(l)−k·l−ρ(p)
η−p

where k =
min(ρ′(l), ρ′(u))

ρ(p)−ρ(l)
p−l ρ′(p)

γ min(ρ′(l), ρ′(u)) ρ(p)−ρ(u)
p−u

ρ(p)−ρ(u)
p−u

ρ(p)−ρ(u)
p−u ρ′(p)

Table 1: Choice of the slopes of the piece-wise linear abstraction refinement.

propagation techniques (Wang et al., 2018b; Zhang et al.,
2018; Singh et al., 2019b).

Lemma 4.3. Given an interval (l, u), a sigmoid function ρ,
and a point (p, q) ∈ R2, where p ∈ (l, u) and q ̸= ρ(p),
there exists a piecewise-linear function h : R 7→ R that 1)
has two linear segments; 2) evaluates to ρ(p) at p; and 3)
separates {(p, q)} and {(x, y)|x ∈ (l, u) ∧ y = ρ(x)}.

Leveraging this observation, given a point (p, q) =
(α(v), α(v̂)), we can construct a piecewise-linear function
h of the following form:

h(x) = ρ(p) +

{
β(x− p) if x ≤ p
γ(x− p) if x > p

that separates the counter-example and the sigmoid func-
tion. If q > ρ(p), we add the formula v̂ ≤ h(v) to the
abstraction. And if q < ρ(p), we add v̂ ≥ h(v).

The values for the slopes β and γ should ideally be chosen
to minimize the over-approximation error while maintain-
ing soundness. Additionally, they should be easily com-
putable. Table. 1 presents a general recipe for choosing β
and γ when the spurious counter-example point is below
the sigmoid function. Choosing β and γ when the counter-
example is above the sigmoid function is symmetric (de-
tails are shown in App. A). η denotes the inflection point of
the sigmoid function.

Note that in case 5, β is the same as γ, meaning that a lin-
ear bound (the tangent line to ρ at p) suffices to exclude
the counter-example. In terms of optimality, all but the γ
value in case 1 and the β value in case 3 maximally re-
duce the over-approximation error among all valid slopes at
(p, ρ(p)). In those two cases, linear or binary search tech-
niques (Zhang et al., 2018; Henriksen & Lomuscio, 2020)
could be applied to compute better slopes, but the formulas
shown give the best approximations we could find without

using search.

Lemma 4.4 (Soundness of slopes). Choosing β and γ us-
ing the recipe shown in Table 1 results in a piecewise-linear
function h that satisfies the conditions of Lemma 4.3.

Algorithm 2 Refine(M ′ := ⟨V ′,X ,Y, ϕ′aff , ϕ′ρ⟩,Φ, α :
V 7→ R.

1: refined← 0
2: for (v, v̂) ∈ AllSigmoid(V ′) do
3: if α(v̂) = ρ(α(v)) then
4: continue
5: refined← refined + 1
6: β, γ ← getSlopes(l(v), u(v), α(v), α(v̂))
7: ϕ′ρ ← ϕ′ρ ∪ addPLBound(β, γ, v, v̂, α)
8: if stopCondition(refined) then
9: break

10: return ⟨V ′,X ,Y, ϕ′aff , ϕ′ρ⟩, refined > 0

An instantiation of the Refine function for neural networks
with sigmoid activation is shown in Alg. 2. It iterates
through each sigmoid activation function. For the ones
that are violated by the current assignment, the algorithm
computes the slopes following the strategy outlined above
with the getSlopes function and adds the corresponding
piecewise-linear bounds (e.g., v̂ ≥ h(v)) with the ad-
dPLBound function. Finally, we also allow the flexibility
to terminate the refinement early with a customized stop-
Condition function. This is likely desirable in practice, as
introducing a piecewise-linear bound for each violated ac-
tivation might be too aggressive. Furthermore, adding a
single piecewise-linear bound already suffices to exclude
α. We use an adaptive stopping strategy where we allow
at most m piecewise-linear bounds to be added in the first
invocation of Alg. 2. And then, in each subsequent round,
this number is increased by a factor k. For our evaluation,
below, we used m = 30 and k = 2, which were the values
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Dataset Gen. Class.
DP DP+BaB DP+BaB+CEGAR

δ δ time(s) δ time(s) # ref.

MNIST MLP GEN1 MLP CLASS1 0.104 ± 0.041 0.139 ± 0.058 7.8 0.157 ± 0.057 84.1 1.5 ± 1.1
MLP GEN2 MLP CLASS1 0.08 ± 0.035 0.106 ± 0.049 20.4 0.118 ± 0.049 114.8 1.0 ± 1.1
MLP GEN1 MLP CLASS2 0.102 ± 0.044 0.136 ± 0.061 16.4 0.15 ± 0.059 120.6 1.2 ± 1.2
MLP GEN2 MLP CLASS2 0.081 ± 0.037 0.112 ± 0.049 60.8 0.121 ± 0.049 191.6 0.8 ± 1.1
MLP GEN1 MLP CLASS3 0.099 ± 0.041 0.135 ± 0.062 41.3 0.146 ± 0.059 186.9 1.0 ± 1.1
MLP GEN2 MLP CLASS3 0.082 ± 0.036 0.116 ± 0.044 75.7 0.122 ± 0.041 163.3 0.6 ± 1.0

CIFAR CONV GEN1 CONV CLASS1 0.219 ± 0.112 0.273 ± 0.153 33.5 0.287 ± 0.148 140.8 4.5 ± 9.2
CONV GEN2 CONV CLASS1 0.131 ± 0.094 0.18 ± 0.117 13.7 0.194 ± 0.115 112.5 3.1 ± 6.0
CONV GEN1 CONV CLASS2 0.176 ± 0.108 0.242 ± 0.14 16.0 0.253 ± 0.136 57.7 1.6 ± 2.4
CONV GEN2 CONV CLASS2 0.12 ± 0.077 0.154 ± 0.087 7.9 0.172 ± 0.085 140.2 3.3 ± 4.2

Table 2: Evaluation results of three solver configurations.

that performed best in an empirical analysis.

Theorem 4.5 (Soundness of refinement). Given a sound
abstraction M ′ of tuple M , a property Φ, and a spuri-
ous counter-example α s.t. M ′[α] |= ¬Φ and M [α] |=
Φ, Alg. 2 produces a sound abstraction of M , M ′′, s.t.
M ′′[α] |= Φ.

5. Experimental evaluation
In this section, we evaluate the performance of our pro-
posed verification framework. We begin by comparing our
method with existing approaches on two real-world distri-
bution shifts (§5.1). Next, we benchmark the performance
of our verifier on a range of challenging distribution shifts
(§ 5.2). Finally, we use our method to show that robust
training tends to result in higher levels of certified robust-
ness against distribution shifts (§ 5.3).

Datasets. We consider a diverse array of distribution
shifts on the MNIST (LeCun et al., 1998) and CIFAR-10
(Krizhevsky et al., 2009) datasets. The code used to gen-
erate the perturbations is adapted from (Hendrycks & Diet-
terich, 2019).

Training algorithms. For each distribution shift we con-
sider, we train a CVAE using the framework outlined
in (Wong & Kolter, 2020). For each dataset, the num-
ber of sigmoid activations used in the CVAE is the same
as the (flattened) output dimension; that is, we use 784
(28 × 28) sigmoids for MNIST and 3072 (3 × 32 × 32)
sigmoids for CIFAR-10. Throughout this section, we use
various training algorithms, including empirical risk min-
imization (ERM) (Vapnik, 1999), invariant risk minimiza-
tion (IRM) (Arjovsky et al., 2019), projected gradient de-
scent (PGD) (Madry et al., 2017), and model-based dataset
augmentation (MDA) (Robey et al., 2020).

Implementation details. We use the DeepPoly (Singh
et al., 2019b) method, which over-approximates the sig-
moid output with two linear inequalities (an upper and a
lower bound), to obtain an initial abstraction (the Abstract
function in Alg. 1) for each sigmoid and instantiate the
Prove function with the Marabou neural network verifi-

cation tool. (Katz et al., 2019)1 All experiments are run on
a cluster equipped with Intel Xeon E5-2637 v4 CPUs run-
ning Ubuntu 16.04 with 8 threads and 32GB memory.

5.1. Comparison of verification performance

We first compare the performance of our proposed CE-
GAR procedure to other baseline verifiers that do not per-
form abstraction refinement. To do so, we compare the
largest perturbation δ in the latent space of generative mod-
els G that each verifier can certify. In our comparison, we
consider three distinct configurations: (1) DP, which runs
the DeepPoly abstract interpretation procedure without any
search; (2) DP+BaB, which runs a branch-and-bound pro-
cedure (Marabou) on an encoding where each sigmoid is
abstracted with the DeepPoly linear bounds and the other
parts are precisely encoded; and (3) DP+BaB+CEGAR,
which is the CEGAR method proposed in this work.2 For
each verifier, we perform a linear search for the largest
perturbation bound each configuration can certify. Specifi-
cally, starting from δ = 0, we repeatedly increase δ by 0.02
and check whether the configuration can prove robustness
with respect to S(x) within a given time budget (20 min-
utes). The process terminates when a verifier fails to prove
or disprove a given specification.

For this experiment, we consider the shear distribution shift
on MNIST and the fog distribution shift on the CIFAR-
10 dataset (see Figure 2). All classifiers are trained us-
ing ERM. To provide a thorough evaluation, we consider
several generator and classifier architectures; details can be
found in App. D. Our results are enumerated in Table 2,
which shows the mean and standard deviation of the largest
δ each configuration is able to prove for the first 100 cor-
rectly classified test images. We also report the average
runtime on the largest δ proven robust by DP+BaB and

1We note that our framework is general and can be used with
other abstractions and solvers.

2We also tried eagerly abstracting the sigmoid with fine-
grained piecewise-linear bounds, but the resulting configuration
performs much worse than a lazy approach in terms of runtime.
Details are shown in App. E
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Dataset Perturbation
δ = 0.1 δ = 0.2 δ = 0.5

robust time(s) robust time(s) robust time(s)

MNIST

brightness 99 3.4 96 5.0 89 13.7
rotation 51 38.6 11 80.1 1 177.9
gaussian-blur 86 4.7 79 10.8 65 36.5
shear 76 21.4 4 102.6 0 135.6
contrast 90 5.9 85 11.1 74 51.0
scale 95 8.0 84 30.8 3 122.7

CIFAR10

brightness 97 3.2 96 5.2 86 18.5
contrast 97 3.0 95 4.6 77 40.0
fog 84 34.3 64 69.1 11 256.0
gaussian-blur 100 2.9 99 3 94 10.7

Table 3: Robustness of ERM against different perturbations.

DP+BaB+CEGAR, as well as the average number of ab-
straction refinement rounds by DP+BaB+CEGAR on those
δ values. Across all configurations, our proposed technique
effectively improves the verifiable perturbation bound with
moderate runtime overhead. This suggests that the counter-
example guided abstraction refinement scheme can suc-
cessfully boost the precision when reasoning about sig-
moid activations by leveraging existing verifiers. Further
comparison of our techniques against existing verifiers on
adversarial robustness verification of sigmoid-based classi-
fiers are provided in App. E.

5.2. Benchmarking our approach on an array of
real-world distribution shifts

We next use our proposed verification procedure to evalu-
ate the robustness of classifiers trained using ERM against
a wide range of distribution shifts. We select the first 100
correctly classified test images from the respective dataset
for each perturbation and verify the robustness of the clas-
sifier against the perturbation set. Three values of the
perturbation variable δ are considered: 0.1, 0.2, and 0.5.
The architectures we consider for MNIST are MLP GEN2

and MLP CLASS3. For CIFAR-10 we use CONV GEN2 and
CONV CLASS2. The verification results are shown in Fig-
ure 3. The “robust” columns show the number of instances
that our verification procedure is able to certify within a 20
minute timeout. As one would expect, the robustness of
each classifier deteriorates as the perturbation budget δ in-
creases. For instance, for the shear transformation, the clas-
sifier is robust on 76 out of the 100 instances when δ = 0.1,
but is only certified robust on 4 instances when δ increases
to 0.2. Information like this could help system develop-
ers to identify perturbation classes for which the network
is especially vulnerable and potentially retrain the network
accordingly.

5.3. Verification for various robust training algorithms

Finally, we compare the robustness and accuracy of classi-
fiers trained using ERM, IRM, PGD, and MDA against the
shear distribution shifts on the MNIST dataset. To this end,

Dataset Train. Alg.
Test set Accuracy % Certified Robust %

Standard Generative δ = 0.05 δ = 0.1

MNIST

ERM 97.9 71.6 73.2 62.4
IRM 97.8 78.7 91.4 37.0
PGD 97.0 79.5 91.0 73.8
MDA 97.2 96.5 97.2 86.6

Table 4: Test set accuracy and verification accuracy

we measure the accuracy on the entire test set under the
learned perturbation generative models. For each classifier,
we then select the first 500 correctly classified images in
its dataset and verify the targeted robustness of the classi-
fier against the perturbation. The architectures we use are
MLP GEN2 and MLP CLASS3.

Accuracy and robustness results are presented in Figure 4.
Interestingly, MDA, which is perturbation-aware, outper-
forms the other three perturbation-agnostic training meth-
ods, on both test accuracy and robustness, suggesting that
knowing what type of perturbation to anticipate is highly
useful. Notice that accuracy on the perturbation set is not
necessarily a good proxy for robustness: while the IRM-
trained classifier has similar accuracy as the PGD-trained
classifier, the former is significantly less robust on the per-
turbation set with δ = 0.1. This further supports the need
for including formal verification in the systematic evalua-
tion of neural networks and training algorithms.

6. Related Work
Beyond norm-bounded perturbations. While the liter-
ature concerning DNN verification has predominantly fo-
cused on robustness against norm-bounded perturbations,
some work has considered other forms of robustness, e.g.,
against geometric transformations of data (Balunović et al.,
2019; Paterson et al., 2021; Mohapatra et al., 2019). How-
ever, the perturbations considered are hand-crafted and can
be analytically defined by simple models. In contrast, our
goal is to verify against real-world distribution shifts that
are defined via the output set of a generative model. Our ap-
proach also complements recent work which has sought to
incorporate neural symbolic components into formal spec-
ifications (Xie et al., 2022). Our main contribution with
respect to that work is to propose the use of deep genera-
tive models in such specifications and to design new tools
which can handle the unique technical challenges that arise
from this setting.

Existing verification approaches. Existing DNN verifi-
cation algorithms broadly fall into one of two categories:
search-based methods (Katz et al., 2017; 2019; Tjeng et al.,
2017; De Palma et al., 2021; Bunel et al., 2020b; Xu et al.,
2020b; Ehlers, 2017; Botoeva et al., 2020; Anderson et al.,
2019; Khedr et al., 2020; Fischetti & Jo, 2017; Bunel et al.,
2020a; Dvijotham et al., 2018; 2020; Wu et al., 2022; Fer-
rari et al., 2022; Tran et al., 2020; Huang et al., 2017)
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and abstraction-based methods (Singh et al., 2019b;a; Lyu
et al., 2020; Zhang et al., 2018; Wang et al., 2018b;a; Dutta
et al., 2018; Weng et al., 2018; Salman et al., 2019; Tjan-
draatmadja et al., 2020; Raghunathan et al., 2018; Xiang
et al., 2018; Gehr et al., 2018; Wang et al., 2021; Singh
et al., 2019c; Boopathy et al., 2019; Singh et al., 2018;
Müller et al., 2021; Elboher et al., 2020; Ryou et al., 2021).
While several existing solvers can handle sigmoid acti-
vation functions (Singh et al., 2019b; Henriksen & Lo-
muscio, 2020; Zhang et al., 2018; Müller et al., 2021;
Xu et al., 2020b), they rely on one-shot abstraction and
lack a refinement scheme for continuous progress. On the
other hand, a separate line of work has shown that veri-
fying DNNs containing a single layer of logistic activa-
tions is decidable (Ivanov et al., 2019), but the decision
procedure proposed in this work is computationally pro-
hibitive. To overcome these limitations, we propose a meta-
algorithm inspired by counter-example-guided abstraction
refinement (Clarke et al., 2000) that leverages existing ver-
ifiers to solve increasingly refined abstractions.

Verification against distribution shifts. The authors
of (Wong & Kolter, 2020) also considered the task of eval-
uating DNN robustness to real-world distribution shifts; in
particular, the approach used in (Wong & Kolter, 2020) re-
lies on randomized smoothing (Cohen et al., 2019). This
scheme provides probabilistic guarantees on robustness,
whereas our approach (as well as the aforementioned ap-
proaches) provides deterministic guarantees. In a sepa-
rate line of work, several authors have sought to perform
verification of deep generative models (Katz et al., 2021;
Mirman et al., 2021). However, each of these works as-
sumes that generative models are piece-wise linear func-
tions, which precludes the use of state-of-the-art models.

7. Conclusion
In this paper, we presented a framework for certifying ro-
bustness against real-world distribution shifts. We pro-
posed using provably trained deep generative models to de-
fine formal specifications and a new abstraction-refinement
algorithm for verifying them. Experiments show that our
method can certify against larger perturbation sets than pre-
vious techniques.

Limitations. We now discuss some limitations of our
framework. First, like many verification tools, the classi-
fier architectures that our approach can verify are smaller
than popular architectures such as ResNet (He et al., 2016)
and DenseNet (Iandola et al., 2014). This stems from
the limited capacity of existing DNN verification tools for
piecewise-linear functions, which we invoke in the CE-
GAR loop. Given the rapid growth of the DNN verification
community, we are optimistic that the scalability of veri-
fiers will continue to grow rapidly, enabling their use on

larger and larger networks. Another limitation is that the
quality of our neural symbolic specification is determined
by how well the generative model captures real-world dis-
tribution shifts. The mismatch between formal specifica-
tion and reality is in fact common (and often unavoidable)
in formal verification. And while (Wong & Kolter, 2020)
shows that under favorable conditions, CVAEs can cap-
ture distribution shifts, these assumptions may not hold in
practice. For this reason, we envision that in addition to
these theoretical results, a necessary future direction will
be to involve humans in the verification loop to validate
the shifts captured by generative models and the produced
counterexamples. This resembles how verification teams
work closely with product teams to continually re-evaluate
and adjust the specifications in existing industrial settings.
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A. Choices of slopes (Cont.)
We present the general recipe of choosing β and γ in the case when the violation point is above the sigmoid function.

l < η, u > η
ρ′′(p) > 0

l < η, u > η
ρ′′(p) = 0

l < η, u > η
ρ′′(p) < 0

l > η ∨ u < η
ρ′′(p) ≤ 0

l > η ∨ u < η
ρ′′(p) > 0

β ρ(p)−ρ(l)
p−l

ρ(p)−ρ(l)
p−l min(ρ′(l), ρ′(u)) ρ′(p) ρ(p)−ρ(l)

p−l

γ

ρ(u)−k·u−ρ(p)
η−p

where k =
min(ρ′(l), ρ′(u))

ρ′(p) ρ′(p) ρ′(p) ρ(p)−ρ(u)
p−u

Table 5: Choice of the slopes of the piece-wise linear abstraction refinement.

B. Proofs
Proof. Theorem 4.2. Alg. 1 returns true only if the property holds on a sound abstraction of M , which following Def. 4.1
means the property holds on M .

Proof. Lemma 4.3. This can be proved by construction using the β and γ values in Table 1 and Table 5. We next prove
that those choices are sound in Lemma 4.4.

Before proving Lemma 4.4, we first state the following definitions and facts. 3

Definition B.1 (Tagent line). The tangent line at a to the function f , denoted with TanLinef,a(x), is defined as:
TanLinef,a(x) = f(a) + f ′(a) ∗ (x− a).

Definition B.2 (Secant line). Definition 2.2. Given a, b ∈ R, the secant line at [a,b] to a function f , denoted with
SecLinef,a,b(x), is defined as: SecLinef,a,b(x) =

f(a)−f(b)
a−b ∗ (x− a) + f(a).

Proposition B.3. Let f be a twice differentiable univariate function. If f ′′(x) ≥ 0 for all x ∈ [l, u], then for all a, x ∈ [l, u],
TanLinef,a(x) ≤ f(x), and for all a, b, x ∈ [l, u], where a < b and a ≤ x ≤ b),SecLinef,a,b(x) ≥ f(x)).

Proposition B.4. Let f be a twice differentiable univariate function. If f ′′(x) ≤ 0 for all x ∈ [l, u], then for all a, x ∈ [l, u],
TanLinef,a(x) ≥ f(x), and for all a, b, x ∈ [l, u], where a < b and a ≤ x ≤ b),SecLinef,a,b(x) ≤ f(x)).

Proposition B.5. Let f be a differentiable univariate function with non-negative derivative at each point. For all γ if
γ ≤ f ′(x) for all x ∈ [l, u], then f(l) + γ(x− l) ≤ f(x) for all x ∈ [l, u].

Proof. Lemma 4.4. Cond. 1 and Cond. 2 hold trivially. Since q < h(p), for Cond. 3, it suffices to show that ∀(m,n) ∈
{(x, y)|x ∈ (l, u) ∧ y = ρ(x)}, n ≥ h(m). More concretely, we show that a) n ≥ ρ(p) + β(m− p) for m ∈ [l, p], and b)
n ≥ ρ(p) + γ(m− p) for m ∈ (p, u]. We prove this is true for each case in Table. 1.

• Case 1: The segment coresponding to β is TanLineρ,p, and Cond. a holds by Prop. B.3. On the other hand, the
choice γ is such that γ ≤ ρ′(x), for all x ∈ [p, u]. Thus Cond. b holds by Prop. B.5.

• Case 2: The segment coresponding to β is TanLineρ,p, and Cond. a holds by Prop. B.3. The segment corresponding
to γ is SecLineρ,p,u, and Cond. b holds by Prop. B.4.

3These are partially adapted from “Incremental Linearization for Satisfiability and Verification Modulo Nonlinear Arithmetic and
Transcendental Functions” by Cimatti et al. We will cite the paper in the revised version of the paper.
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• Case 3: For Cond. a, we further break it into 2 cases: m ≤ η and m > η. In the former case, the line ρ(p)+β(m−p)
is below the line ρ(l) + min(ρ′(l), ρ′(u))(x− l), which by Prop. B.5 is below ρ. When m > η, ρ(p) + β(m− p) is
below the secant line SecLineρ,η,p, which by Prop. B.4 is below ρ. On the other hand, the segment corresponding
to γ is SecLineρ,p,u, and Cond. b holds by Prop. B.4.

• Case 4: The segments are both secant lines, SecLineρ,l,p and SecLineρ,p,u, thus the conditions hold by Prop. B.4.
• Case 5: The segments are both tangent lines, TanLineρ,p, thus the conditions hold by Prop. B.3.

The proof of the soundness of the slope choices in Table. 5 is symmetric.

Proof. Theorem 4.5. We can prove the soundness ofM ′′ by induction on the number of invocations of the ADDPLBOUND
method. If it is never invoked, then M ′′ = M ′ which is a sound abstraction. In the inductive case, it follows from
Lemma 4.4 that adding an additional piecewise-linear bound does not exclude variable assignments that respect the precise
sigmoid function. On the other hand, when M [α] |= Φ, the ADDPLBOUND method will be invoked at least once, which
precludes α as a counter-example with respect to M ′′. That is, M ′′[α] |= Φ.

C. Encoding piece-wise linear refinement using LeakyReLU
We observe that it is possible to encode the piecewise-linear bounds that we add during abstraction refinement using
LeakyReLU functions. While we do not leverage this fact, we lay out the reduction to LeakyReLU in this section and leave
it as future work to further leverage verification tools supporting LeakyReLUs.

A LeakyReLU rα is a piecewise linear function with two linear segments:

rα(x) =

{
α · x if x ≤ 0

x if x > 0
,

where α ≥ 0 is a hyper-parameter.

Given a piecewise linear function with two linear segments:

h(x)− ρ(p) =

{
β(x− p) if x ≤ p
γ(x− p) if x > p

We can rewrite h as the following:

h(x) = γ ∗ rα(x− p) + ρ(p), where α :=
β

γ

Note that the α value is always valid (≥ 0) because both β and γ that we choose are positive. This means that we can
potentially encode the piecewise linear bounds as affine and leaky relu layers. For example, the piecewise linear upper
bound y ≤ h(x) for a sigmoid y = ρ(x) can be encoded as

a1 = x− p (5a)
a2 = rα(a1) (5b)
a3 = a2 + ρ(p) (5c)
y = a3 + a4 (5d)
a4 ≤ 0 (5e)

, where a1, a2, a3, a4 are fresh auxilliary variables. Eqs. a) and c) can be modeled by feed-forward layers. Eq. b) can be
modeled by a leaky relu layer. If we treat a4 as an input variable to the neural network, Eq. d) can be modeled as a residual
connection. This suggest that we could in principle express the abstraction as an actual piecewise-linear neural networks
(with bounds on the input variables (e.g., a4), making it possible to leverage verifiers built on top of Tensorflow/Pytorch.
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D. Details on training and CVAEs
D.1. Dataset

We consider the well-known MNIST and CIFAR-10 dataset. The MNIST dataset contains 70, 000 grayscale images of
handwritten digits with dimensions 28 × 28, where we used 60, 000 images for training and held 10, 000 for testing. The
CIFAR-10 dataset contains 60, 000 colored images of 10 classes with dimensions 3 × 32 × 32, where we used 50, 000
images for training and held 10, 000 for testing.

To perturb the images, we adapt the perturbations implemented in (Hendrycks & Dietterich, 2019).4 When training and
testing the models, we sample images from the dataset and randomly perturb each image with a strength parameter c that
is sampled uniformly from the ranges given in Table 6.

Table 6: Perturbation range in the training data

Dataset Perturbation Range of c

MNIST

brightness [.0, .5]
rotation [−60, 60]

gaussian blur [1.0, 6.0]
shear [0.2, 1.0]

contrast [0.0, 0.4]
translate [1.0, 5.0]

scale [0.5, 0.9]

CIFAR10

brightness [.05, .3]
contrast [.15, .75]

fog [.2, 1.5], [1.75, 3]
gaussian blur [.4, 1]

D.2. Architecture

On each dataset, we train a conditional variational encoder (CVAE) with three components: prior network, encoder net-
work, and a decoder network (generator). We also train a set of classifiers. In this section, we detail the architecture of
these networks. The architecture of MNIST networks are shown in Tables 7–13. Those of the CIFAR networks are shown
in Tables 14–19. The output layers of the generators are activated with sigmoid function. All hidden-layers use ReLU
activations.

Table 7: Prior

Type Parameters/Shape

Input 28 × 28

Dense 784 × 1

Dense 300 × 1

Dense 8 × 2

Table 8: Encoder

Type Parameters/Shape

Input 28 × 28 × 2

Dense 784 × 1

Dense 300 × 1

Dense 8 × 2

Table 9: MLP GEN1

Type Param./Shape

Input 28 × 28 + 8

Dense 200 × 1

Dense 784 × 1

Table 10: MLP GEN2

Type Param./Shape

Input 28 × 28 + 8

Dense 400 × 1

Dense 784 × 1

Table 11: MLP CLASS1

Type Parameters/Shape

Input 28 × 28

Dense 32 × 1

Dense 32 × 1

Dense 10 × 1

Table 12: MLP CLASS2

Type Parameters/Shape

Input 28 × 28

Dense 64 × 1

Dense 32 × 1

Dense 10 × 1

Table 13: MLP CLASS3

Type Parameters/Shape

Input 28 × 28

Dense 128 × 1

Dense 64 × 1

Dense 10 × 1

D.3. Optimization

We implement our models and training in PyTorch. The CVAE implementation is adapted from that in (Wong & Kolter,
2020). On both datasets, we trained our CVAE networks for 150 epochs using the ADAM optimizer with a learning rate of
10−4 and forgetting factors of 0.9 and 0.999. In addition, we applied cosine annealing learning rate scheduling. Similar to

4https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_cifar_c.py

https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_cifar_c.py
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Table 14: Prior

Type Parameters/Shape

Input 32 × 32 × 3

Dense 3072 × 1

Dense 300 × 1

Dense 8 × 2

Table 15: Encoder

Type Parameters/Shape

Input 32 × 32 × 3 × 2

Dense 3072 × 1

Dense 300 × 1

Dense 8 × 2

Table 16: CONV GEN1

Type Param./Shape

Input 32 × 32 × 3 + 8

Dense 32 × 32 × 4

Conv 3 1 × 1 filters, padding 0

Table 17: CONV GEN2

Type Param./Shape

Input 32 × 32 × 3 + 8

Dense 32 × 32 × 4

Conv 3 3 × 3 filters, padding 1

Table 18: CONV CLASS1

Type Params./Shape

Input 32 × 32 × 3

Conv 3 3 × 3 filters, stride 3

Conv 3 2 × 2 filters, stride 2

Dense 25 × 1

Dense 10 × 1

Table 19: CONV CLASS2

Type Params./Shape

Input 32 × 32 × 3

Conv 3 3 × 3 filters, stride 2

Conv 3 2 × 2 filters, stride 2

Dense 25 × 1

Dense 10 × 1

(Wong & Kolter, 2018), we increase β linearly from β = 0 at epoch 1 to β = 0.01 at epoch 40, before keeping β = 0.01
for the remaining epochs. We use a batch size of 256.

The ERM classifiers on the MNIST dataset are trained with the ADAM optimizer with a learning rate of 10−3 for 20
epochs. The classifiers for the CIFAR-10 dataset are trained with the ADAM optimizer with learning rate 10−3 for 200
epochs. The classifiers in Sec. 5.3 are trained also all trained with the ADAM optimizer with a learning rate of 10−3 for
20 epochs. For PGD, we use a step size of α = 0.1, a perturbation budget of ϵ = 0.3, and we use 7 steps of projected
gradient ascent. For IRM, we use a small held-out validation set to select λ ∈ {0.1, 1, 10, 100, 1000}. For MDA, a step
size of α = 0.1, a perturbation budget of ϵ = 1.0, and we use 10 steps of projected gradient ascent.

D.4. Computing resources

The classifiers used in Subsec. 5.3 were trained using a single NVIDIA RTX 5000 GPU. The other networks were trained
using 8 AMD Ryzen 7 2700 Eight-Core Processors.

E. Additional Evaluation of CEGAR
E.1. Comparison with PRIMA (Müller et al., 2021)

A recent abstraction-based technique that handles transcendental activation functions is proposed in the PRIMA frame-
work (Müller et al., 2021), which goes beyond single neuron abstractions and consider convex relaxations over groups
of activation functions. In this section, we compare against PRIMA on the same sigmoid benchmarks used in its evalua-
tion (Müller et al., 2021). We run the PRIMA implementation in the artifact associated with the paper, 5 and run a config-
uration PRIMA+BaB+CEGAR which is the same as DP+BaB+CEGAR, the configuration we used in Sec. 5, except that we
first use PRIMA to derive tighter variable bounds. Both PRIMA and our configurations are run on uniform hardware (the
same as described in Sec. 5). Each job is given 16 threads and 30 minutes wall-clock time limit. PRIMA terminates without
error on all instances. Table 20 shows the number of verified instances and the average runtime on verified instances by the
two configurations. Our configuration is able to consistently solve more instances with only moderate increase on average
solving time. This suggests that the meta-algorithm that we propose can leverage the tighter bounds derived by existing
abstraction-based methods and boost the state-of-the-art in verification accuracy on sigmoid-based networks.

E.2. Evaluation on VNN-COMP-21 benchmarks

We also evaluate our techniques on the 36 sigmoid benchmarks used in VNN-COMP-2021. We exclude the benchmark
where a counter-example can be found using PGD attack, and evaluate on the remaining 35 benchmarks. In particular,
we run a sequential portfolio approach where we first attempt to solve the query with α-β-CROWN (Zhang et al., 2018;
Wang et al., 2021; Xu et al., 2020b) (competition version), and if the problem is not solved, we run PRIMA+BaB+CEGAR.

5https://dl.acm.org/do/10.1145/3462308/full/

https://dl.acm.org/do/10.1145/3462308/full/
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Table 20: Comparison with PRIMA (Müller et al., 2021) on the same benchmarks used in (Müller et al., 2021)

Model Acc. ϵ
PRIMA Ours

robust time(s) robust time(s)

6x100 99 0.015 52 106.5 65 119.5
9x100 99 0.015 57 136.0 96 323.7
6x200 99 0.012 65 197.9 75 260.7

ConvSmall 99 0.014 56 100.5 63 157.8

Table 20 shows the results. As a point of comparison, we also report the numbers of the top three performing tools (Xu et al.,
2020b; Wang et al., 2021; Henriksen & Lomuscio, 2020; Singh et al., 2019b; Müller et al., 2021) during VNN-COMP-
21 on these benchmarks. 6 While α-β-CROWN is already able to solve 29 of the 35 benchmarks, with the abstraction
refinement scheme, we are able to solve 1 additional benchmark. We note that during the competition α-β-crown did
not use up the 5 minute per-instance timeout limitation on any of these benchmarks. 7 This suggests that the solver was
not able to make further progress once the analysis is inconclusive on the one-shot abstraction of the sigmoid activations.
On the other hand, our technique provides a viable way to make continuous progress if the verification attempt by the
state-of-the-art fails.

Table 21: Comparison on the VNN-COMP-21 benchmarks

Model # Bench.
α-β-CROWN VeriNet ERAN Ours

robust time(s) robust time(s) robust time(s) robust time(s)

6x200 35 29 12.9 20 2.5 19 145.5 30 83.2

E.3. Evaluation of an eager refinement strategy

We also compare the lazy abstraction refinement strategy with an eager approach where piecewise-linear bounds are added
for each sigmoid from the beginning instead of added lazily as guided by counter-examples. In particular, we attempt
to add one piecewise-linear upper-bound and one piecewise-linear lower-bound with K linear segments for each sigmoid
activations. The segment points are even along the x-axis. We try 2 and 3 for the value of K. We than evaluate on
the same MNIST benchmarks as in Table 2. The results are shown in Table 22. While the two strategies are still able
to improve upon the perturbation bounds found by the pure abstract-interpretation-based approach DP, the means of the
largest certified δ are significantly smaller than those of the CEGAR-based configuration we propose. Interestingly, while
K=3 uses a finer-grained over-approximation compared with K=2, the bounds the former can certify is only larger on one
of the six benchmark sets. This suggests that the finer-grained abstraction increases the overhead to the solver and is overall
not effective at excluding spurious counter-examples on the set of benchmarks that we consider, which supports the need
of a more informed abstraction refinement strategy such as the one we propose.

F. Licenses
The MNIST and CIFAR-10 datasets are under The MIT License (MIT). The Marabou verification tool is under
the terms of the modified BSD license (https://github.com/NeuralNetworkVerification/Marabou/
blob/master/COPYING).

6https://arxiv.org/abs/2109.00498
7https://github.com/stanleybak/vnncomp2021_results/blob/main/results_csv/a-b-CROWN.csv

https://github.com/NeuralNetworkVerification/Marabou/blob/master/COPYING
https://github.com/NeuralNetworkVerification/Marabou/blob/master/COPYING
https://arxiv.org/abs/2109.00498
https://github.com/stanleybak/vnncomp2021_results/blob/main/results_csv/a-b-CROWN.csv
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Dataset Gen. Class.
K=2 K=3 DP+BaB+CEGAR

δ time(s) δ time(s) δ time(s) # ref.

MNIST MLP GEN1 MLP CLASS1 0.137 ± 0.043 88.9 0.137 ± 0.042 109.8 0.157 ± 0.057 84.1 1.5 ± 1.1
MLP GEN2 MLP CLASS1 0.109 ± 0.031 114.5 0.109 ± 0.031 199.0 0.118 ± 0.049 114.8 1.0 ± 1.1
MLP GEN1 MLP CLASS2 0.126 ± 0.045 64.0 0.129 ± 0.044 95.9 0.15 ± 0.059 120.6 1.2 ± 1.2
MLP GEN2 MLP CLASS2 0.108 ± 0.038 159.0 0.106 ± 0.036 133.8 0.121 ± 0.049 191.6 0.8 ± 1.1
MLP GEN1 MLP CLASS3 0.132 ± 0.043 139.5 0.131 ± 0.042 190.0 0.146 ± 0.059 186.9 1.0 ± 1.1
MLP GEN2 MLP CLASS3 0.105 ± 0.033 107.1 0.098 ± 0.035 87.5 0.122 ± 0.041 163.3 0.6 ± 1.0

Table 22: Evaluation results of the eager approach. We also report again the results of DP+BaB+CEGAR, which is the same as Table 2.


