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Abstract

This paper proposes a theoretical and computa-
tional framework for training and robustness ver-
ification of implicit neural networks based upon
non-Euclidean contraction theory. The basic idea
is to cast the robustness analysis of a neural net-
work as a reachability problem and use (i) the
ℓ∞-norm input-output Lipschitz constant and (ii)
the tight inclusion function of the network to over-
approximate its reachable sets. First, for a given
implicit neural network, we use ℓ∞-matrix mea-
sures to propose sufficient conditions for its well-
posedness, design an iterative algorithm to com-
pute its fixed points, and provide upper bounds for
its ℓ∞-norm input-output Lipschitz constant. Sec-
ond, we introduce a related embedded network
and show that the embedded network can be used
to provide an ℓ∞-norm box over-approximation of
the reachable sets of the original network. More-
over, we use the embedded network to design
an iterative algorithm for computing the upper
bounds of the original system’s tight inclusion
function. Third, we use the upper bounds of the
Lipschitz constants and the upper bounds of the
tight inclusion functions to design two algorithms
for the training and robustness verification of im-
plicit neural networks. Finally, we apply our al-
gorithms to train implicit neural networks on the
MNIST dataset and compare the robustness of
our models with the models trained via existing
approaches in the literature.
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1. Introduction
Recent advances in machine learning have led to increasing
deployment of neural networks in real-world applications,
including natural language processing, computer vision, and
self-driving vehicles. Despite their remarkable computa-
tional power, neural networks are notoriously vulnerable to
adversarial attacks; a small perturbations in the input can
lead to large deviations in the output (Szegedy et al., 2014).
Understanding this input sensitivity is essential in safety-
critical applications, since the consequences of adversarial
perturbations can be disastrous. Unfortunately, many of
the existing approaches for robustness analysis of neural
networks either (i) are based on specific attacks and do not
provide any formal guarantees (Athalye et al., 2018), or
(ii) provide guarantees which are too conservative (Szegedy
et al., 2014), or (iii) are not scalable to large-scale prob-
lems (Combettes & Pesquet, 2020). As a result, there has
been a huge interest in developing computationally tractable
and non-conservative algorithms for training and verifica-
tion of robust neural networks.

Implicit neural networks are a class of learning models that
replace the explicit hidden layers with an implicit equa-
tion (Bai et al., 2019; El Ghaoui et al., 2021). Compared
to traditional neural networks, implicit neural networks are
known to have advantages including (i) being more suitable
for certain class of learning problems such as constrained
optimization problems (Amos & Kolter, 2017) (ii) being
more memory efficient while maintaining comparable accu-
racy (Bai et al., 2019), and (iii) showing improved training
due to fewer vanishing and exploding gradients (Kag et al.,
2020). Despite their benefits, implicit networks can suffer
from well-posedness issues and convergence instabilities.
Additionally, their input-output behavior may suffer from
robustness issues and adversarial perturbations. We note
that many of the classical robustness analysis tools for tradi-
tional neural networks are either not applicable to implicit
neural networks or will lead to conservative results. Indeed,
robustness of implicit neural networks is not yet well un-
derstood and open questions remain regarding their robust
training and verification.

Most of the existing approaches for studying robustness
of neural networks focus on either the ℓ2-norm or ℓ∞-
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norm robustness measures. For neural networks with high-
dimensional inputs and subject to dense perturbations, ℓ2-
norm robustness measures are known to provide overly con-
servative estimates of robustness and are less informative
than their ℓ∞-norm counterparts. In this paper, we pro-
pose a framework based on contraction theory with respect
to non-Euclidean ℓ∞-norm to study well-posedness, sta-
bility, and robustness of implicit neural networks. To pro-
vide robustness guarantees, we over-approximate reachable
set of implicit neural networks using (i) ℓ∞-norm input-
output Lipschitz constants, and (ii) input-output tight in-
clusion functions. We note that, in general, finding the
Lipschitz constants and tight inclusion functions of implicit
neural networks can be computationally challenging. Us-
ing our non-Euclidean contractive approach, we provide
non-conservative and computationally tractable estimates
of the ℓ∞-norm input-output Lipschitz constants and the
tight inclusion functions of implicit neural networks. We
then use these estimates of the Lipschitz constants and the
inclusion functions to design two algorithms for training
and verification of implicit neural networks with respect to
ℓ∞-box input perturbations. Finally, we evaluate the perfor-
mance and efficiency of our algorithms for training robust
implicit neural networks on the MNIST dataset. This paper
is a review of the accepted papers (Jafarpour et al., 2021;
2022) and the submitted paper (Davydov et al., 2022).

2. Related works
Robustness of neural networks. Starting with (Goodfel-
low et al., 2015), a large body of research has focused on
the design of neural networks that are robust with respect to
adversarial perturbations (Papernot et al., 2016). Unfortu-
nately, many of these approaches are based on robustness
with respect to specific attacks and they do not provide
formal robustness guarantees (Athalye et al., 2018). Re-
cent research has focused on providing provable robustness
guarantees for neural networks (Madry et al., 2018; Carlini
& Wagner, 2017). Rigorous methods for training and/or
verifying neural networks generally fall into four different
categories (i) Lipschitz bound methods (Fazlyab et al., 2019;
Scaman & Virmaux, 2018; Combettes & Pesquet, 2020),
(ii) interval bound methods (Mirman et al., 2018; Gowal
et al., 2018; Zhang et al., 2020), (iii) optimization-based
methods (Wong & Kolter, 2018; Zhang et al., 2018), and (iv)
probabilistic methods (Cohen et al., 2019; Li et al., 2019).

Implicit learning models. Several frameworks for study-
ing implicit models of learning have been developed in the
literature (Bai et al., 2019; El Ghaoui et al., 2021). Re-
garding the well-posedness of implicit neural networks,
(El Ghaoui et al., 2021) proposes a sufficient spectral condi-
tion for existence of solutions for the fixed point equation.
In (Winston & Kolter, 2020; Revay et al., 2020), using

monotone operator theory, a suitable parametrization of
the weight matrix is proposed which guarantees the stable
convergence of suitable fixed point iterations. The work
(Jafarpour et al., 2021) proposes non-Euclidean contraction
theory to design implicit neural networks and study their
well-posedness, stability, and robustness with respect to the
ℓ∞-norm. Regarding the robustness guarantees, compared
to the traditional neural networks, there are far fewer works
on the robust verification and training of implicit neural
network. In (El Ghaoui et al., 2021) a sensitivity-based
robustness analysis for implicit neural network is proposed.
Approximation of the Lipschitz constants of deep equilib-
rium networks has been studied in (Pabbaraju et al., 2021;
Revay et al., 2020). Recently, the ellipsoid methods based
on semi-definite programming (Chen et al., 2021) and the
interval-bound propagation method (Wei & Kolter, 2022)
have been proposed for robustness certification of deep equi-
librium networks.

3. Mathematical Preliminaries
Matrices and functions. Given a matrix B ∈ Rn×m, we
denote the non-negative part of B by [B]+ = max(B, 0)
and the nonpositive part of B by [B]− = min(B, 0).
The Metzler part and the non-Metzler part of square ma-
trix A ∈ Rn×n are denoted by ⌈A⌉Mzl ∈ Rn×n and
⌊A⌋Mzl ∈ Rn×n, respectively, where

(⌈A⌉Mzl)ij =

{
Aij Aij ≥ 0 or i = j

0 otherwise,

⌊A⌋Mzl = A− ⌈A⌉Mzl.

For matrices C ∈ Rn×m and D ∈ Rp×q, the Kronecker
product of C and D is denoted by C ⊗ D. For every
η ∈ Rn

>0, we denote the largest (smallest) component of
η by ηmax (ηmin). Moreover, we define the diagonal ma-
trix [η] ∈ Rn×n by [η]ii = ηi, for every i ∈ {1, . . . , n}.
For η ∈ Rn

>0, the diagonally weighted ℓ∞-norm is
defined by ∥x∥∞,[η]−1 = maxi |xi|/ηi, the diagonally
weighted ℓ∞-matrix measure is defined by µ∞,[η]−1(A) =
maxi∈{1,...,n} Aii +

∑
j ̸=i

ηj

ηi
|Aij |. The ℓ2-matrix measure

is also defined by µ2(A) = 1
2λmax(A+A⊤), where λmax

denoted the largest eigenvalue. Let f : Rr → Rq be a
locally Lipschitz map and X ⊆ Rr. The ℓ∞-norm Lip-
schitz constant of f over X is the smallest real number
LipX∞(f) ∈ R≥0 such that

∥f(x)− f(y)∥∞ ≤ LipX∞(f)∥x− y∥∞

for every x, y ∈ X . We denote the ℓ∞-norm Lipschitz
constant of f over Rr by Lip∞(f). Let F : Rn×Rm → Rn

be a mapping, for every α ∈ (0, 1], we define the α-average
map Fα : Rn × Rm → Rn by Fα(x, u) = (1 − α)x +
αF(x, u), for every x ∈ Rn and every u ∈ Rm.



Robust Training and Verification of Implicit Neural Networks

Intervals and inclusion functions. For every x ≤ x̂, we
define the interval [x, x̂] = {y ∈ Rn | x ≤ y ≤ x̂}.
The subset T n ⊂ R2n is defined by T n := {(x, x̂) ∈
R2n | x ≤ x̂}. Let f : Rr → Rq be a mapping. Then
F =

[
F

F

]
: T r → R2q is an inclusion function for f , if, for

every x ≤ y ≤ x̂,

1. F(y, y) ≥ F(x, x̂) and F(y, y) ≤ F(x, x̂);

2. F(x, x) = F(x, x) = f(x).

If F is an inclusion function for f , then it is easy to see that,

f([x, x̂]) ⊆ [F(x, x̂),F(x, x̂)], for all x ≤ x̂. (1)

4. Reachability analysis of learning models
Given a nonlinear learning model with the input-output map
f : Rr → Rq and the input set X ⊆ Rr, the reachable set
of f is given by

Y = f(X ) = {y ∈ Rq | y = f(x), x ∈ X}

Many desirable properties of the learning model, such as
robustness and safety, can be presented as Y belonging to
a specification set S ⊂ Rq. However, verification of these
specifications requires an exact computation of the set Y
which is usually complicated. In this section, we review two
frameworks for over-approximating the reachable sets of f
and study the connection between these two settings.

Lipschitz constants. For the nonlinear learning model
f : Rr → Rq, the ℓ∞-norm Lipschitz constant Lip∞(f)
provide the tightest ℓ∞-norm over-approximation of reach-
able set of f . We define the set Ω = {x ∈ Rr | ∂f

∂x exists}.
By Rademacher’s theorem, the set Rr/Ω is a measure zero
set. As a result, one can compute the ℓ∞-norm Lipschitz
constant of f using the following optimization problem:

Lip∞(f) = sup
x∈Ω

∥Df(x)∥∞ (2)

Inclusion functions. The mapping F =
[
F

F

]
: T r → R2q

is tight inclusion function for f , if, for every other inclusion
function G =

[
G

G

]
: T r → R2q of f , we have

G(x, x̂) ≤ F(x, x̂), F(x, x̂) ≥ G(x, x̂), for all x ≤ x̂

The tight inclusion function F provides the tightest box over-
approximation of reachable sets of f . It is easy to see that
if F =

[
F

F

]
is the tight inclusion function for f , then it can

be computed using the following optimization problem, for
every i ∈ {1, . . . , n}:

Fi(x, x̂) = min
z∈[x,x̂]

fi(z), Fi(x, x̂) = max
z∈[x,x̂]

fi(z) (3)

The next theorem shows that, compared to Lipschitz con-
stants, tight inclusion functions provide sharper estimates
of reachable sets.

Theorem 4.1 (Inclusion function vs. Lipschitz constant).
Let f : Rr → Rq be a continuous mapping and F =

[
F

F

]
:

T r → R2q be the tight inclusion function for f . Then, for
every x ≤ x, we have

∥F(x, x)− F(x, x)∥∞ ≤ Lip[x,x]∞ (f)∥x− x∥∞.

Proof. Let i ∈ {1, . . . , k} be such that ∥F(x, x) −
F(x, x)∥∞ =

∣∣Fi(x, x)− Fi(x, x)
∣∣. Note that since f

is continuous and the box [x, x] is compact, there exist
η∗, ξ∗ ∈ [x, x] such that

max
y∈[x,x]

fi(y) = fi(η
∗), min

y∈[x,x]
fi(y) = fi(ξ

∗).

This implies that ∥F(x, x) − F(x, x)∥∞ = |fi(η∗) −
fi(ξ

∗)| = ∥f(ξ∗)− f(η∗)∥∞ and thus

∥F(x, x)− F(x, x)∥∞ ≤ Lip[x,x]∞ ∥ξ∗ − η∗∥∞
≤ Lip[x,x]∞ (f)∥x− x∥∞.

5. Implicit neural networks
Given W ∈ Rn×n, U ∈ Rn×r, b ∈ Rn C ∈ Rq×n, and
c ∈ Rq , we consider the implicit neural network

z = Φ(Wz + Ux+ b) := N(z, x),

y = Cz + c, (4)

where z ∈ Rn, x ∈ Rr, y ∈ Rq, and Φ : Rn → Rn is
defined by Φ(z) = (ϕ1(z1), . . . , ϕn(zn)). For every i ∈
{1, . . . , n}, we assume the activation function ϕi : R → R
is weakly increasing, i.e., ϕi(xi) ≥ ϕi(zi) for xi ≥ zi,
and non-expansive, i.e., |ϕi(xi) − ϕi(zi)| ≤ |xi − zi| for
all xi and zi; if ϕi is differentiable, these conditions are
equivalent to 0 ≤ ϕ′

i(xi) ≤ 1 for all xi ∈ R. The above two
assumptions holds for a large class of activation function
including but not limited to ReLU, leakyReLU, tanh, and
sigmoid functions (El Ghaoui et al., 2021). It is known
that implicit neural networks can be ill-posed and can suffer
from convergence instability. The next theorem provides a
sufficient condition for well-posedness of the implicit neural
network (4). We refer to (Jafarpour et al., 2021, Theorem 3)
for the proof.

Theorem 5.1 (Well-posedness and computation of fixed
points). Consider the implicit neural network (4). Given
a vector η ∈ Rn

>0, if µ∞,[η]−1(W ) < 1 holds, then the
following statements are true:

1. the fixed point equation (4) is well-posed, i.e., there
exists a unique fixed point,
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2. for every α ∈ (0,
(
1−mini∈{1,...,n}[Wii]

−)−1
], the α-

average iteration zk+1 = Nα(z
k) is contracting with

respect to the norm ∥ · ∥∞,[η]−1 and converges to the
unique fixed point of the implicit neural networks (4).

Remark 5.2 (Comparison to the literature). 1.
In (El Ghaoui et al., 2021) a well-posedness
condition of the form λpf(|W |) < 1 is proposed,
where |W | denotes the entrywise absolute value of
the matrix W and λpf denotes the Perron-Frobenius
eigenvalue. Our well-posedness condition in The-
orem 5.1(1) is less conservative than the condition
λpf(|W |) < 1 and its convex relaxation of the form
∥W∥∞ < 1 proposed in (El Ghaoui et al., 2021).

2. In (Winston & Kolter, 2020) a framework based on
Monotone Operator Theory is developed for studying
implicit neural network (4) with well-posedness con-
dition In − 1

2 (W +W⊤) ⪰ (1− γ)In. In the context
of contraction theory (Lohmiller & Slotine, 1998),

In − 1
2 (W +W⊤) ⪰ (1− γ)In ⇐⇒ µ2(W ) ≤ γ.

We refer to (Jafarpour et al., 2021) for the proof. Thus,
our framework can be considered as the non-Euclidean
version of the setting in (Winston & Kolter, 2020).

6. Robustness of implicit neural networks
In this section, we study input-output robustness of the im-
plicit neural network (4) using the reachability frameworks
of Section 4 for the input-output map fN : Rr → Rq:

fN(x) := Cz∗x + c (5)

where z∗x ∈ Rn satisfies z∗x = N(z∗x, x).

Robustness via Lipschitz bounds. We use the Lipschitz
constant framework in Section 4 to study reachable sets of
implicit neural networks. Finding the Lipschitz constant
of the input-output map fN requires solving the optimiza-
tion problem (2) which is computationally intractable for
large-scale networks. In the next theorem, we provide an
upper bound for this Lipschitz constant and use it to over-
approximate the reachable set of the neural network. We
refer to (Jafarpour et al., 2021) for the proof.

Theorem 6.1 (Input-output Lipschitz bounds). Consider
the implicit neural network (4) with the input-output map fN
defined in (5). Let η ∈ Rn

>0 be such that µ∞,[η]−1(W ) < 1:

1. the Lipschitz constant of fN is bounded by:

Lip∞(fN) ≤
(
ηmax

ηmin

)
∥U∥∞∥C∥∞

1− µ∞,[η]−1(W )+

2. for every x, x′ ∈ Rr, by denoting ξ :=(
ηmax

ηmin

)
∥U∥∞∥C∥∞

1−µ∞,[η]−1 (W )+ ∥x− x′∥∞ ∈ R>0, we have

fN(x
′) ∈ [fN(x)− ξ1q, fN(x) + ξ1q].

Remark 6.2 (Comparison with the literature). 1.
In (El Ghaoui et al., 2021), the following upper bound
for the tight ℓ∞-norm input-output Lipschitz constant
of the implicit neural network (4) is obtained:

Lip∞(fN) ≤
∥U∥∞∥C∥∞
1− ∥W∥∞

Since µ∞(W ) ≤ ∥W∥∞, for every W ∈ Rn×n, we
can conclude that, compared to (El Ghaoui et al., 2021),
Theorem 6.1(1) provides a sharper estimate for the
Lipschitz constant of implicit neural network (4)

2. In (Pabbaraju et al., 2021) upper bounds for the ℓ2-
norm input-output Lipschitz constant of implicit neural
network (4) are obtained. However, these estimates
are restricted to implicit neural networks with ReLU
activation functions and cannot be extended to more
general classes of activation functions.

Robustness via inclusion functions. Next, we use the
inclusion function framework in Section 4 to study reach-
able sets of the implicit neural network (4). Finding tight
inclusion function of the input-output map fN requires solv-
ing the optimization problem (3) which is computationally
intractable for large-scale networks. In this section, we
provide an upper bound for this tight inclusion function.

We first introduce the embedded implicit neural network
associated with (4). Given x ≤ x in Rr, we define the
embedded implicit neural network by[
x
x

]
=

[
Φ(⌈W ⌉Mzlz + ⌊W ⌋Mzlz + [U ]+x+ [U ]−x+ b)
Φ(⌈W ⌉Mzlz + ⌊W ⌋Mzlz + [U ]+x+ [U ]−x+ b)

]
[
y
y

]
=

[
[C]+ [C]−

[C]− [C]+

] [
x
x

]
+

[
c
c

]
. (6)

We also define NE : R2n × R2r → Rn by

NE(z, ẑ, x, x̂) :=

Φ(⌈W ⌉Mzlz + ⌊W ⌋Mzlẑ + [U ]+x+ [U ]−x̂+ b).

Intuitively, the embedded implicit neural network (6) is an
implicit neural network with the box input [x, x] and the box
output [y, y]. Surprisingly, one can show the sufficient condi-
tion for well-posedness of the implicit neural network (4) in
Theorem 5.1 is also a sufficient condition for well-posedness
of the embedded implicit neural network (6). In the next
theorem, we study the connection between robustness of
the implicit neural network (4) and reachability of the em-
bedded implicit neural network (6). We refer to (Jafarpour
et al., 2022, Theorem 1) for the proof.
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Theorem 6.3 (Input-output inclusion function). Consider
the implicit neural network (4). Let η ∈ Rn

>0 is such
that µ∞,[η]−1(W ) < 1. Then, for α ∈ (0, (1 −
mini∈{1,...,n}(Wii)

−)−1], the following statements hold:

1. the α-average iterations
[
zk+1

zk+1

]
=

[
NE

α(zk,zk,x,x)

NE
α(zk,zk,x,x)

]
is

contracting with respect to the norm ∥ · ∥∞,I2⊗[η]−1

and converge to the unique fixed point
[
z∗

z∗

]
of the

embedded implicit neural network (6);

2. the α-average iterations zk+1 = Nα(z
k, x) is contract-

ing with respect to the norm ∥ · ∥∞,[η]−1 and converges
to the unique fixed point z∗ ∈ [z∗, z∗] of the implicit
neural network (4);

3. for the tight inclusion function FN =
[
FN

FN

]
: T r →

R2q of the input-output map fN defined by equation (5),
we have

FN(x, x) ≥ [C]+z∗ + [C]−z∗ + c := GN(x, x)

FN(x, x) ≤ [C]+z∗ + [C]−z∗ + c := GN(x, x)

4. for every x ∈ [x, x], we have

fN(x) ∈ [GN(x, x),GN(x, x)].

Remark 6.4. 1. Theorem 6.3 (resp. Theorem 5.1) can be
interpreted as a dynamical system approach to study ro-
bustness (resp. well-posedness) of implicit neural net-
works. Indeed, it is easy to see that the α-average map
NE

α (resp. Nα) is the forward Euler discretization of
the dynamical system d

dt [
x
x ] = − [ xx ] +

[
NE(x,x,u,u)

NE(x,x,u,u)

]
(resp. dx

dt = −x + N(x, u)). it is easy to see that
the condition µ∞,[η]−1(W ) < 1 ensures that these
dynamical systems are contracting with respect to
∥ · ∥∞,[η]−1 (Lohmiller & Slotine, 1998).

2. In terms of evaluation time, computing the ℓ∞-norm
box bounds on the output is equivalent to two forward
passes of the original implicit network.

3. It can be shown that Implicit neural networks
contain feedforward neural networks as a special
case (El Ghaoui et al., 2021). Indeed, for a fully-
connected feedforward neural network with k lay-
ers and n neurons in each layer, there exists an im-
plicit network representation with block upper diag-
onal weight matrix W ∈ Rkn×kn (El Ghaoui et al.,
2021, Section 3.2). As a result, for small enough
δ > 0 and for η = (δ, δ2 . . . , δk)⊤ ∈ Rk

>0, we have
µ∞,[η]−1⊗In(W ) < 1. In this case, the fixed point
of the embedded implicit network (6) is unique, can
be computed explicitly using back-substitution, and
corresponds exactly to the interval bound propagation
approach in (Gowal et al., 2018).

4. Motivated by the interval bound proportion approaches
for robustness of feedforward neural networks (see for
instance (Gowal et al., 2018)), the following fixed point
equation for estimating the output of the network is
proposed in (Wei & Kolter, 2022):[
x
x

]
=

[
Φ([W ]+z + [W ]−z + [U ]+x+ [U ]−u+ b)
Φ([W ]+z + [W ]−z + [U ]+x+ [U ]−x+ b)

]
,[

y
y

]
=

[
[C]+ [C]−

[C]− [C]+

] [
z
z

]
+

[
c
c

]
,

It is worth mentioning that the condition
µ∞,[η]−1(W ) < 1 proposed in Theorem 6.3
does not, in general, ensure well-posedness of the
above fixed point equation. Note that ⌈W ⌉Mzl ≤ [W ]+

and [W ]− ≤ ⌊W ⌋Mzl for every W ∈ Rn×n. As

a result, compared to the inclusion function
[
GN

GN

]
defined in Theorem 6.3(3), the above iteration provides
a more conservative estimate of the reachable sets.

7. Training robust implicit neural networks
In this section, we design optimization problems for train-
ing implicit neural networks which are robust to input per-
turbations. Consider the implicit neural network (4) and
assume that {(x̂l, ŷl)}Nl=1 is a set of N labeled data points
used for training. For every l ∈ {1, . . . , N}, we define
the following upper and the lower bounds on the input x̂l

by xl = x̂l − ϵ1r and xl = x̂l + ϵ1r. We use the robust
optimization framework (Madry et al., 2018) for designing
robust neural networks. Let L be the cross-entropy loss
function, then one can define the following robust training
problem for the implicit neural network (4):

min
W,U,C,b,c,η

N∑
l=1

max
xl∈[xl,xl]

L(fN(xl), ŷl),

zl = N(zl, xl), fN(x
l) = Czl + c,

µ∞,[η]−1(W ) ≤ γ, (7)

where γ < 1 is a hyperparameter ensuring the fixed point
problem is well-posed. Unfortunately, using the robust loss
for training in (7) leads to a min-max optimization problem
that scales poorly with the size of the training data (Wong
& Kolter, 2018). In the next two paragraphs, we provide
two relaxation of this algorithm using our estimates of the
Lipschitz constants and the tight inclusion functions.

Lipschitz bounds. Since the cross-entropy loss func-
tion is convex, there exists λ > 0 such that, for every
l ∈ {1, . . . , N},

L(fN(xl), ŷl) ≤ L(fN(x̂l), ŷl) + λLip∞(fN).
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Now using the upper bound on Lip∞(fN) in Theo-
rem 6.1(1), for every l ∈ {1, . . . , N},

L(fN(xl), ŷl) ≤ L(fN(x̂l), ŷl) + λ
(

ηmax

ηmin

)
∥U∥∞∥C∥∞

1−µ∞,[η]−1 (W )+ .

As a result, using the Lipschitz bounds for fN, we can relax
the training optimization problem (7) to obtain the Lipschitz
training algorithm:

min
W,U,C,b,c,η

N∑
l=1

L(fN(x̂l), ŷl) + λ
(

ηmax

ηmin

)
∥U∥∞∥C∥∞

1−µ∞,[η]−1 (W )+ ,

zl = N(zl, xl), fN(x
l) = Czl + c,

µ∞,[η]−1(W ) ≤ γ, (8)

where λ is the regularization hyperparameter and γ ∈
(−∞, 1) is the well-posedness hyperparameter.

Inclusion functions. Following (Zhang et al., 2020, Eq.
3) and (Jafarpour et al., 2022), for each input x′ ∈ [x, x],
we define the relative classifier variable, mx(x′) ∈ Rq by

mx(x′) = fN(x
′)i1q − fN(x

′), (9)

where i is the correct label of x. Note that mx(x′)j > 0
for all j ̸= i if and only if x′ is labeled the same as x
by the neural network. Therefore, we write mx(x′) =
T xfN(x

′) = T xCz∗x′ + T xc, for suitable specification ma-
trix T x ∈ {−1, 0, 1}q×q defined via the linear transforma-
tion (9). We can use Theorem 6.3 to define

mx(x, x) = [T xC]+z∗ + [T xC]−z∗ + T xc. (10)

It is clear that mx(x, x) is a lower bound for the relative clas-
sifier variable mx. Using (Wong & Kolter, 2018, Theorem
2), for the cross-entropy loss, and for ml := mx̂l

(xl, xl)
and every l ∈ {1, . . . , N},

L(fN(xl), ŷl) ≤ L(−ml, ŷl), for all xl ∈ [xl, xl].

Therefore, one can instead use the loss function∑N
l=1 L(−ml, ŷl) as a tractable upper bound on the robust

loss in the training optimization problem.

As pointed out in (Gowal et al., 2018), using the robust
loss

∑N
l=1 L(−ml, ŷl) in the training can lead to conver-

gence instability. To improve the stability of the training,
following (Gowal et al., 2018), we instead use a convex
combination of the empirical risk loss and the robust loss.
Therefore, for T l := T x̂l

, we get the inclusion function
training algorithm:

min
W,U,C,b,c,η

N∑
l=1

(1− κ)L(fN(x̂l), ŷl) + κL(−ml, ŷl),[
zl

zl

]
=

[
NE(zl, zl, xl, xl)
NE(zl, zl, xl, xl)

]
,

ml = [T lC]+zl + [T lC]−zl + T lc, zl = N(zl, x̂l),

fN(x̂
l) = Czl + c, µ∞,[η]−1(W ) ≤ γ. (11)

where κ ∈ [0, 1] is the regularization parameter and γ ∈
(−∞, 1) is the well-posedness hyperparameter.

In both optimization problems (8) and (11), we can remove
the constraint µ∞,[η]−1(W ) ≤ γ in the training using the
following parametrization of weight matrix W (Jafarpour
et al., 2021, Appendix B):

W = [η]−1T [η]− diag(|T |1n) + γIn, (12)

for an unconstrained matrix T ∈ Rn×n. Using the
parametrization (12) in the training problem not only im-
proves the computational efficiency of the optimization but
also allows for the design of implicit neural networks with
additional structure such as convolutions. We refer to (Jafar-
pour et al., 2021) for more details about training of convolu-
tional implicit neural networks.

8. Theoretical and numerical comparisons
In this section, we first introduce the notion of certified
adversarial robustness for classification problems. We say
that the implicit neural network (4) is certified adversarially
robust with radius ϵ at input x if

max
v∈Rr

{fN(x′)i −max
j ̸=i

fN(x
′)j | ∥x− x′∥∞ ≤ ϵ,

i is the correct label of x} ≥ 0.

Verification of certified adversarial robustness can be com-
putationally complicated. In the next two paragraphs, we
use the frameworks in Section 4 to provide lower bounds
for certified adversarial robustness.

Lipschitz bounds. Consider an implicit neural net-
work (4) with η ∈ Rn

>0 such that µ∞,[η]−1(W ) < 1. Using
Theorem 6.1(2), if

fN(x)i −max
j ̸=i

fN(x)j

− 2

(
ηmax

ηmin

)
∥U∥∞∥C∥∞ϵ

1− µ∞,[η]−1(W )+
≥ 0 (13)

holds, then the implicit neural network (4) is certified adver-
sarially robust with radius ϵ.

Inclusion functions. Consider an implicit neural net-
work (4) with η ∈ Rn

>0 such that µ∞,[η]−1(W ) < 1. Note
that mx(x, x) defined in (10) is a lower bound for the rela-
tive classifier variable mx. Thus, one can use Theorem 6.3
to show that, if i is the correct label of the input x and

min
j ̸=i

{mx
j (x− ϵ1r, x+ ϵ1r)} ≥ 0 (14)

holds, then the implicit neural network (4) is certified adver-
sarially robust with radius ϵ.
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8.1. MNIST experiments

In this section, we compare the certified adversarial robust-
ness of different approaches on the MNIST handwritten digit
dataset, a dataset of 70000 28× 28 pixel images, 60000 of
which are for training, and 10000 for testing. Pixel values
are normalized in [0, 1]1.

In the first experiment, we train an implicit neural
network with n = 100 neurons using the Lipschitz
training algorithm (8) for different values of λ ∈
{0, 10−1, 10−2, 10−3, 10−4, 10−5}. For well-posedness,
we imposed µ∞,[η]−1(W ) ≤ 0 and we directly parameterize
W as in (12). Training data is broken up into batches of 100
and the model was trained for 15 epochs with a learning
rate of 10−3. Regarding training times, using the α-average
iteration in Theorem 5.1(2), our model takes on average
9.8 seconds to train per epoch. After training, the models
are validated on test data using the sufficient conditions
for certified adversarial robustness (13). For fixed ϵ and
the 10000 test images, over 10 trials, it takes, on average,
2.250 seconds to verify the certified adversarial robustness
using the formula (13). To provide a conservative upper
bound on the certified adversarial robustness and to observe
empirical robustness, the model was additionally attacked
using projected gradient descent (PGD) and fast-gradient
sign method (FGSM) attacks. Results from these experi-
ments are shown in Figure 1. We compare robustness of our
implicit neural networks with the Monotone Operator Deep
Equilibrium (MON) model (Winston & Kolter, 2020) with
the monotonicity parameter m = 1.

In the second experiment, we train two implicit neural net-
works using the inclusion function training algorithm (11).
For well-posedness, we impose µ∞,[η]−1(W ) ≤ 0 for some
η ∈ Rn

>0 and we directly parameterize W as in (12). Both
models are trained for 40 epochs using the Adam optimizer
and a learning rate of 5× 10−4. At epoch 30, the learning
rate is decreased to 10−4. For the first model (shown by
dashed lines in Figure 2), we set ϵ = κ = 0 during the
training. This is equivalent to training a non-robust implicit
neural network. For the second model (shown by solid lines
in Figure 2), we pick ϵtest = 0.1 and κnom = 0.75. From
epochs 1 to 10, κ and ϵ are set to 0 so the models undergo
regular (non-robust) training. From epochs 11 to 20, ϵ and
κ are linearly increased such that at epoch 20, ϵ = ϵtest and
κ = κnom. Regarding the training time, using the α-average
iterations in Theorem 6.3(1), the second model takes on
average 23.9 seconds to train per epoch. After training, both
models are validated on test data using the sufficient condi-
tions for certified adversarial robustness (14). For a fixed ϵ
and over the 10000 test images over 10 trials, on average,
it takes 11.29 seconds to compute the certified adversarial

1All experiments were run on a Tesla P100-PCIE-16GB GPU
in Google Colab
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Figure 1. On the top is a plot of the certified adversarial robustness
of the models trained using Lipschitz training algorithm (8) for
different regularization hyperparameter λ. The top plot include the
certified adversarial robustness of the MON model trained with the
monotonicity parameter m = 1. For fixed ϵ, the fraction of test
inputs which are certified robust are plotted. At the bottom is a plot
of the empirical robustness of the implicit neural model trained
with the Lipschitz training algorithm (8) with the regularization
hyperparameter λ = 10−5 subject to the PGD and the FGSM
attacks. Note the difference in scale on the horizontal axis.

robustness using formula (14). Figure 2 provides plots for
this experiment.

Summary evaluation. From the first experiment, we can
study the role of the regularization hyperparameter λ in the
Lipschitz training algorithm (8). From Figure 1 it is clear
that increasing the value of λ leads to increased certified ro-
bustness of the model. However, this increase is obtained at
the cost of reduction in clean accuracy. Moreover, compared
to the MON model (Winston & Kolter, 2020), our implicit
models with regularization parameter larger than 10−5 are
certifiably more robust with respect to sizable ℓ∞-norm in-
put perturbations. Finally, by comparing the top plot and
the bottom plot in Figure 2, one can see a very large gap be-
tween the certified adversarial robustness and the empirical
robustness under both PGD and FGSM attacks.

From the second experiment, we can conclude that implicit
neural networks trained using the inclusion function train-
ing algorithm (11) (solid lines) vastly outperform the non-
robustly trained models (the dashed line) in both certified
and empirical robustness. For instance, at an ℓ∞ perturba-
tion radius of 0.1, we observe that the model trained using
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Figure 2. On the top is a plot of the certified adversarial robust-
ness of the trained model using inclusion function training algo-
rithm (11). At the bottom is a plot of the empirical robustness of
the implicit neural model trained with inclusion function training
algorithm (11) subject to the PGD attacks.

the inclusion function training algorithm, on average, has
certified robustness of 83.13% and empirical robustness of
85.84% with respect to PGD attack. It is worth mentioning
that, at an ℓ∞ perturbation radius of 0.1, the non-robustly
trained model has 0% certified robustness and 8.04% empir-
ical robustness with respect to PGD attack.

Finally, we compare the performance of the model trained
using the Lipschitz optimization algorithm (8) in Figure 1
with the model trained using the inclusion function opti-
mization algorithm (11) in Figure 2. We can deduce that (i)
the Lipschitz bound approach is significantly faster in both
training the models and verification of their certified adver-
sarial robustness and (ii) the inclusion function approach
will lead to more accurate and more robust models.

9. Conclusions
Using non-Euclidean contraction theory, we develop a
framework for studying robustness of implicit neural net-
works. For a given implicit neural network, we use estimates
of (i) its ℓ∞-norm input-output Lipschitz constant, and (ii)
its tight inclusion function to obtain ℓ∞-norm box upper
bounds for input-output behavior of the network. Based
on these upper bounds, we design two algorithms for train-
ing and robustness verification of implicit neural networks.
Empirical evidence shows the efficiency of our algorithms.
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