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Abstract

This work concerns the development of deep net-
works that are certifiably robust to adversarial
attacks. Joint robust classification-detection was
recently introduced as a certified defense mecha-
nism, where adversarial examples are either cor-
rectly classified or assigned to the “abstain” class.
In this work, we show that such provable frame-
work can be extended to networks with multiple
explicit abstain classes, where the adversarial ex-
amples are adaptively assigned to those. While
naïvely adding multiple abstain classes can lead
to “model degeneracy”, we propose a regulariza-
tion approach and a training method to counter
this degeneracy by promoting full use of the mul-
tiple abstain classes. Our experiments demon-
strate that the proposed approach consistently
achieves favorable standard vs. robust verified
accuracy tradeoff, outperforming state-of-the-art
algorithms for various choices of number of ab-
stain classes.

1. Introduction
Deep Neural Networks (DNNs) have revolutionized
many machine learning tasks such as image process-
ing (Krizhevsky et al., 2012; Zhu et al., 2021) and speech
recognition (Graves et al., 2013; Nassif et al., 2019). How-
ever, despite their superior performance, DNNs are highly
vulnerable to adversarial attacks and perform poorly on out-
of-distributions samples (Goodfellow et al., 2014; Liang
et al., 2017; Yuan et al., 2019). To address the vulnerability
of DNNs to adversarial attacks, the community have de-
signed various defense mechanisms that are robust against
adversarial attacks (Papernot et al., 2016; Jang et al., 2019;

1Industrial and Systems Engineering Department, University
of Southern California, Los Angeles, CA. 2Bosch Center for Ar-
tificial Intelligence, Pittsburgh, PA. 3Carnegie Mellon University,
Pittsburgh, PA..

1 st Workshop on Formal Verification of Machine Learning, Bal-
timore, Maryland, USA. Colocated with ICML 2022. Copyright
2022 by the author(s).

Goldblum et al., 2020; Madry et al., 2017; Huang et al.,
2021). These mechanisms provide robustness against cer-
tain types of attacks such as the Fast Gradient Sign Method
(FGSM) (Szegedy et al., 2013; Goodfellow et al., 2014).
However, the overwhelming majority of these defense mech-
anisms are highly ineffective against more complex attacks
such as adaptive and brute-force methods (Tramer et al.,
2020; Carlini & Wagner, 2017). This ineffectiveness neces-
sitates: 1) the design of rigorous verification approaches that
can measure the robustness of a given network; 2) the de-
velopment of defense mechanisms that are verifiably robust
against any attack strategy within the class of permissible
attack strategies.

To verify robustness of a given network against any attack
in a reasonable set of permissible attacks (e.g. `p-norm
ball around the given input data), one needs to solve a hard
non-convex optimization problem (see, e.g., Problem (1) in
this paper). Consequently, exact verifiers, such as (Tjeng
et al., 2017; Xiao et al., 2018), are not scalable to large
networks. To develop scalable verifiers, the community turn
to “inexact" verifiers. Such methods can only verify a sub-
set of perturbations to the input data that the network can
defend against successfully. This is typically achieved by
finding tractable lower-bounds for the verification optimiza-
tion problem. Gowal et al. (2018) finds such a lower-bound
by interval bound propagation (IBP) which is essentially
an efficient convex relaxation of the constraint sets in the
verification problem. Despite its simplicity, this approach
demonstrates a relatively superior performance compared
to prior works. IBP-CROWN (Zhang et al., 2019) combines
IBP with a novel linear relaxations to have a tighter ap-
proximation compared to standalone IBP. β-Crown (Wang
et al., 2021) utilizes a branch-and-bound technique com-
bined with the linear bounds proposed by IBP-CROWN to
further tighten the relaxation gap. While β-Crown demon-
strates a tremendous performance gain over other verifiers
such as Zhang et al. (2019); Fazlyab et al. (2019); Lu &
Kumar (2019), it cannot be used as a tool in large-scale
training procedures due to its computationally expensive
branch-and-bound search.

Another line of work for enhancing the performance of
certifiably robust neural networks relies on the idea of learn-
ing a detector alongside the classifier to capture adversar-
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ial and out-of-distribution samples. Instead of trying to
classify adversarial images correctly, these works design a
detectorto determine whether a given sample is natural/in-
distribution or it is a crafted attack/out-of-distribution. Chen
et al. (2020) train the detector on both in-distribution and
out-of-distribution samples to learn a detector distinguish-
ing these samples. Hendrycks & Gimpel (2016) develops a
method based on a simple observation that, for real samples,
the output of softmax layer is closer to either0 or 1 com-
pared to out-of-distribution and adversarial examples where
the softmax output entries are distributed more uniformly.
DeVries & Taylor (2018); Sheikholeslami et al. (2020) learn
uncertainty regions around actual samples where the pre-
diction of the network remains the same. Interestingly, this
approach does not require out-of-distribution samples dur-
ing training. Other approaches such as deep generative
models (Ren et al., 2019), self-supervised and ensemble
methods (Vyas et al., 2018; Chen et al., 2021) are also used
to learn out-of-distribution samples. However, typically
these methods are vulnerable to adversarial attacks and can
be easily fooled by carefully designed out-of-distribution
images (Fort, 2022). A more resilient approach is to jointly
learn the detector and the classi�er (Laidlaw & Feizi, 2019;
Sheikholeslami et al., 2021) by adding an auxiliaryabstain
output class capturing adversarial samples.

Building on these prior works, this paper extends the idea
of using a single abstain class to using multiple abstain
classes. We observe that naïvely adding multiple abstain
classes results in a model degeneracy phenomenon where
all adversarial examples are assigned to a small fraction
of abstain classes (while other abstain classes are not uti-
lized). To resolve this issue, we propose a regularizer that
balances the assignment of adversarial examples to abstain
classes. Our experiments demonstrate that utilizing multiple
abstain classes in conjunction with the proper regulariza-
tion enhances the robust veri�ed accuracy of joint detec-
tors/classi�ers on adversarial examples while maintaining
the standard accuracy of the classi�er.

Contributions. We propose a framework for training and
veri�cation of robust neural nets with multiple detection
classes. We generalize the IBP training and veri�cation
procedure, and� -Crown veri�er to networks consisting
of a classi�er and multiple detection classes jointly. We
identi�ed a “model degeneracy" phenomenon where not all
detection classes are utilized. To prevent model degeneracy
and to avoid tuning the number of network detectors, we
introduce a regularization approach guaranteeing that all de-
tectors contributing to the detection of adversarial examples.
Our experiments show that, compared to the networks with
a single detection class, we enhance the robust veri�ed ac-
curacy by more than5% and2% on CIFAR-10 and MNIST
datasets respectively for various perturbation sizes.

2. Background
2.1. Veri�cation of feedforward neural networks
Consider anL-layer feedforward neural network withW i

denoting the weight associated with layeri , andb i denoting
the bias parameter of layeri . Let � i (�) denote the activation
function applied at layeri . Throughout the paper, we assume
the activation function is the same for all hidden layers, i.e.,
� i (�) = ReLU(�); 8i = 1 ; : : : ; L � 1. Thus, our neural
network can be described as

zi = � (W i zi � 1 + b i ); i = 1 ; 2; : : : ; L � 1;

zL = W L zL � 1 + bL

wherez0 = x is the input to the neural network andzi is
the output of layeri . Note that the activation function is not
applied at the last layer. We consider a supervised classi-
�cation task wherezL represents the logits. To explicitly
show the dependence ofzL on the input data, we use the
notationzL (x) to denote logit values whenx is used as the
input data point.

Given an inputx0 with the ground-truth labely, and a pertur-
bation setC(x0; � ) (e.g.C(x0; � ) = f x j kx � x0k1 � � g),
the network is provably robust against adversarial attacks
onx0 if

0 � min
x 2C (x 0 ;� )

cT
yk zL (x); 8k 6= y; (1)

wherecyk = ey � ek with ek (resp. ey ) being the stan-
dard unit vector whosek-th row (resp.y-th row) is1 and
the other entries are zero. Condition(1) implies that the
logit score of the network for the true labely is always
greater than that of any other labelk for all x 2 C(x0; � ).
Thus, the network will classify all the points insideC(x0; � )
correctly. The objective function in Equation (1) is non-
convex whenL � 2. It is customary in many works to move
the non-convexity of the problem to the constraint set and
reformulate Equation (1) as

0 � min
z2Z (x 0 ;� )

cT
yk z; 8k 6= y; (2)

where Z (x0; � ) = f z j z = zL (x) for somex 2
C(x0; � )g. This veri�cation problem has a linear objective
function and a non-convex constraint set. Since both prob-
lems(1) and(2) are non-convex, existing works proposed
ef�ciently computable lower-bounds for the optimal objec-
tive value of them. For example, Gowal et al. (2018); Wong
& Kolter (2018) utilize convex relaxation, while Tjeng et al.
(2017); Wang et al. (2021) rely on mixed integer program-
ming and branch-and-bound to �nd lower-bounds for the
optimal objective value of (2). In what follows, we explain
two popular and relatively successful approaches for solving
the veri�cation problem (1) (or equivalently (2)) in detail.
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2.2. Veri�cation of neural networks via interval bound
propagation (IBP)

Interval Bound Propagation (IBP) of Gowal et al. (2018)
tackles problem (2) by convexi�cation of the constraint set
Z (x0; � ) to its convex hypercube super-set[z(x0); �z(x0)],
i.e.,Z (x0; � ) � [z(x0); �z(x0)]. After this relaxation, prob-
lem (2) can be lower-bounded by the convex problem:

min
z(x 0 ) � z� �z(x 0 )

cT
yk z (3)

The upper- and lower- boundsz(x0) and�z(x0) are obtained
by recursively �nding the convex relaxation of the image of
the setC(x0; � ) at each layer of the network. In particular,
for the adversarial setC(x0; � ) = f x j kx � x0k1 � � g,
we start fromz0(x0) = x0 � � 1 and�z0(x0) = x0 + � 1.
Then, the lower-boundzL (x0) and upper-bound�zL (x0) are
computed by the recursions:

�zi (x0) = � (W T
i

�zi � 1 + zi � 1

2
+ jW T

i j
�zi � 1 � zi � 1

2
);

zi (x0) = � (W T
i

�zi � 1 + zi � 1

2
� j W T

i j
�zi � 1 � zi � 1

2
);

8i = 1 ; : : : ; L:
(4)

One of the main advantages of IBP is its ef�cient computa-
tion: veri�cation of a given input only requires two forward
passes for �nding the lower and upper bounds, followed by
a linear programming.

2.3. Veri�cation of neural networks via � -Crown

Despite its simplicity, IBP-based veri�cation comes with
a certain limitation, namely the looseness of its layer-by-
layer bounds of the input. To overcome this limitation,
tighter veri�cation methods have been proposed in the liter-
ature (Singh et al., 2018; Zhang et al., 2019; Dathathri et al.,
2020; Wang et al., 2021). Among these,� -crown (Wang
et al., 2021) utilizes the branch-and-bound technique to gen-
eralize and improve the IBP-CROWN proposed in Zhang
et al. (2019). Letzi and�zi be the estimated element-wise
lower-bound and upper-bounds for the pre-activation value
of zi , i.e., zi � zi � �zi , where these lower and upper
bounds are obtained by the method in Zhang et al. (2019).
Let ẑi be the value we obtain by applying ReLU func-
tion to zi . We say a neuron is unstable if its sign after
applying ReLU activation cannot be determined based on
only knowing the corresponding lower and upper bounds.
That is, a neuron is unstable ifzi < 0 < �zi . For stable
neurons, no relaxation is needed to enforce convexity of
� (z) (since the neuron operates in a linear regime). On the
other hand, given an unstable neuron, they use branch-and-
bound (BAB) approach to split the input range of the neuron
into two sub-domainsCil = f x 2 C(x0; � )j ẑi � 0g and

Ciu = f x 2 C(x0; � )j ẑi > 0g. Within each subdomain, the
neuron operates linearly and hence veri�cation is easy. Thus
we can verify for each of these subdomains separately. If
we haveN unstable nodes, BAB algorithm requires the in-
vestigation of2N sub-domains in the worst-case.� -Crown
proposes a heuristic for traversing all these subdomains: The
higher the absolute value of the corresponding lower-bound
of a node is, the sooner it is visited by the veri�er. For
verifying each sub-problem, Wang et al. (2021) proposed
a lower-bounded which requires solving a maximization
problem over two parameters� and� :

min
z2Z (x 0 ;� )

cT
yk z � max

� ;�
g(x; � ; � )

where g(x; � ; � ) = ( a + P � � )T x + qT
� � + d � : (5)

Here, the matrixP and the vectorsq; a andd are functions
of W i ; b i ; zi ; �zi ; � ; and� parameters. See Appendix D for
the precise de�nition ofg. Notice that any choice of(� ; � )
provides a valid lower bound for veri�cation. However,
optimizing� and� in (5) leads to a tighter bound.

2.4. Robust classi�cation of adversarial examples with
detection

Sheikholeslami et al. (2021) improves the performance
tradeoff on natural and adversarial examples by introducing
an auxiliary class for detecting adversarial examples. If
this auxiliary class is selected as the output, the networks
“abstains" from declaring any of the originalK classes for
the given input. Leta be the abstain class. The network
performs correctly on an adversarial image if it is classi�ed
correctly (similar to robust networks without detectors) or it
is classi�ed as the abstain class (detected as an adversarial
example). Hence, the network is veri�ed against a certain
classk if

0 � min
z2Z (x 0 ;� )

max(cT
yk z; cT

ak z); (6)

i.e., if the score of the true labely or the score of the abstain
classa is larger than the score of classk.

2.5. Training a joint robust classi�er and detector

To train a neural network that can jointly detect and classify
a dataset of images, Sheikholeslami et al. (2021) relies on
the loss function of the form:

L Total = L Robust+ � 1L Abstain
Robust + � 2L Standard; (7)

where the termL Standarddenotes the standard loss when
no adversarial examples are considered. More precisely,
L Standard = 1

n

P n
i =1 `xent

�
zL (x i ); yi

�
, where`xent is the

standard cross-entropy loss. The termL Robust in (7) rep-
resents the worst-case adversarial loss used in (Madry et al.,
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2017), without considering the abstain class. Precisely,

L Robust= max
� 1 ;:::; � n

1
n

nX

i =1

`xent
�
zL (x i + � i ); yi

�

s:t : k� i k1 � �; 8i = 1 ; : : : ; n:

Finally, the Robust-Abstain lossL Abstain
Robust is the minimum of

the detector and the classi�er losses:

L Abstain
Robust = max

� 1 ;:::; � n

1
n

nX

i =1

min
�

`xent
�
zL (x i + � i ); yi

�
;

`xent
�
zL (x i + � i ); a

� �

s:t : k� i k1 � �; 8i (8)

In (7), tuning � 1 and � 2 controls the trade-off between
standard and robust accuracy. Furthermore, to obtain non-
trivial results, IBP-relaxation should be incorporated during
training for the minimization sub-problems inL robust and
L abstain

robust (Sheikholeslami et al., 2021; Gowal et al., 2018).

3. Veri�cation of neural networks with
multiple abstain classes

The robust veri�ed accuracy of a joint classi�er and detector
can be enhanced by introducing multiple abstain classes
instead of a single abstain class for detecting adversarial ex-
amples. This is simply because adding more classes would
increase the capacity of the network in detecting adversarial
examples. This observation is illustrated in a simple ex-
ample in Appendix F. Note that a network with multiple
abstain classes can be equivalently modeled by another net-
work with one more layer and a single abstain class. This
added layer can merge all abstain classes and reduce them
to a single class.Thus, anyL-layer neural network with
multiple abstain classes can be equivalently modeled by
anL + 1 -layer neural network with a single abstain class.
However, the performance of veri�ers such as IBP reduces
as we increase the number of layers. Thus, it is bene�cial
to train/verify the originalL -layer neural network with mul-
tiple abstain classes instead ofL + 1 -layer network with a
single abstain class. This fact will be illustrated further in
our experiments. Next, we present how one can verify a
network with multiple abstain classes.

Let a1; a2; : : : ; aM be M abstain classes detecting adver-
sarial samples. A sample is considered adversarial if the
output of the network is any of theM abstain classes.
A neural network withK regular classes andM abstain
classes outputs the label of a given sample asŷ(x) =
argmaxi 2f 1;:::;k;a 1 ;:::;a M g[zL (x)] i :

An input is veri�ed if the network either correctly classi�es
it or assigns it to any of the explicitM abstain classes. More
formally and following equation(6), the neural network is

veri�ed for input x0 against a target classk for a given
image(x; y) if

0 � min
z2Z (x 0 ;� )

max
�

cT
yk zL ; cT

a1 k zL ; : : : ; cT
aM k zL

	
; (9)

Since the setZ (x0; � ) is highly nonconvex, verifying(9)
is computationally expensive. In the next two subsections,
we present suf�cient conditions for(9) based on IBP and
� -crown approaches.

3.1. Veri�cation with IBP

Following the IBP approach to relax the nonconvex
setZ (x0; � ) leads to the following result:

Theorem 3.1. Condition(9) is satis�ed if

min
� 2P

max
zL � 1 � zL � 1 � �zL � 1

� ck (� )T (W L zL � 1 + bL ); (10)

8k 6= y; is greater than 0. where P =
f (� 0; : : : ; � M )j

P M
i =0 � i = 1 ; � i � 0; 8i = 0 ; 1; : : : ; M g;

and ck (� ) = � 0cyk + � 1ca1 k � � � + � M caM k : Here, the
boundszL � 1 and�zL � 1 are obtained according to(4).

Unlike (9), the condition in(10) is easy to verify computa-
tionally. To understand this, let us de�ne

Jk (� ) = max
z� zL � 1 � �z

� ck (� )T (WL zL � 1 + bL ): (11)

Then, our aim in(10) is to minimizeJk (� ) overP. First
notice that the maximization problem(11) can be solved in
closed form as described in Step 1 of Algorithm 1. Con-
sequently, one can rely on Danskin's Theorem (Danskin,
2012) to compute the subgradient of the functionJk (�).
Thus, to minimizeJk (�) in (10), we can rely on the Breg-
man proximal (sub)gradient method (see (Gutman & Pena,
2018) and the references therein). This algorithm is guaran-
teed to �nd � � accurate solution to(10) in T = O(1=

p
� )

iterations–see (Gutman & Pena, 2018, Corollary 2).

Algorithm 1 IBP veri�cation of networks with multiple
abstain classes
1: Parameters: Stepsize� > 0, number of iterationsT.
2: Initialize � 0 = 1 and� 1 = : : : = � M = 0 :
3: for t = 0 ; 1; : : : ; T do

4: Set[z� t
L � 1]j =

(
[zL � 1]j if [W T

L c(� )] j � 0

[�zL � 1]j otherwise.
; for

everyj .

5: Set� t +1
m =

� t
m exp( � 2� (z � t

L � 1 )T W T
L ca m k )

P M
j =0 � t

j exp( � 2� (z � t
L � 1 )T W T

L ca j k )
; 8m 2

f 0; : : : ; M g, wherea0 is de�ned asy.
6: end for
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3.2. Veri�cation with � -Crown

While IBP veri�cation is computationally ef�cient, it is less
accurate than� –Crown, as discussed earlier. Hence, to
obtain a more accurate veri�cation, in this section we focus
on � –Crown veri�cation of networks with multiple abstain
classes. To this end, we will �nd a suf�cient condition for(9)
using the lower-bound technique of(5) in � –Crown. In
particular, by switching the minimization and maximization
in (9) and using the� –Crown lower bound(5), we can �nd
a lower-bound of the form

min
zL 2Z (x 0 ;� )

maxf cT
yk zL ; cT

a1 k zL ; : : : ; cT
aM k zL g �

max
� 2P ;� ;� � 0

G(x0; � ; � ; � ): (12)

The details of this inequality and the exact de�nition of func-
tion G(�) is provided in Appendix E. Note that any feasible
solution to the right hand side of(12) is a valid lower-bound
to the original veri�cation problem (left-hand-side). Thus,
in order for(9) to be satis�ed, it suf�ces to �nd a feasible
(� ; � ; � ) such thatG(x0; � ; � ; � ) � 0. To optimize the
RHS of(12) in Algorithm 2, we utilize AutoLirpa library
of (Zhang et al., 2019) for updating� , and use Bregman
proximal subgradient method to update� and� – See ap-
pendix B. We use Euclidean norm Bregman divergence for
updating� , and Shannon entropy Bregman divergence for
� to obtain closed-form updates.

Algorithm 2 � –Crown veri�cation of networks with multi-
ple abstain classes
1: Input : number of iterationsT, number of iterations in

the inner-loopT0, Step-size
 .
2: for t = 0 ; 1; : : : ; T do
3: Update � using AutoLirpa library (Zhang et al.,

2019)
4: for k = 0 ; 1; : : : ; T0 do
5: � = [ � + 
 @G(x 0 ;� ;� ;�

@� ]+ , where [w]+ =
maxf 0; wg is projection to non-negative orthant

6: � new
m =

� old
m exp(2 
 @G( x 0 ; � ; � ; � )

@� m
)

P M
j =0 � old

j exp(2 
 @G( x 0 ; � ; � ; � )
@� j

)
; 8m 2

f 0; : : : ; M g
7: end for
8: end for

4. Training of neural networks with multiple
abstain classes

To train a neural network consisting of multiple abstain
classes, we follow a similar combination of loss functions
as in(7). While the last term (L Standard) can be computed
ef�ciently, the �rst and second terms cannot be computed
ef�ciently because even evaluating the functionsL Robustand
L Abstain

Robust requires maximizing nonconcave functions. Thus,

instead of minimizing these two terms, we will minimize
their upper-bounds. Particularly, following (Sheikholeslami
et al., 2020, Equation (17)), we use�L Robust as an upper-
bound toL Robust. This upper-bound is obtained by the IBP
relaxation procedure described in subsection 2.2. To obtain
an upper-bound for the Robust-Abstain loss termL Abstain

Robust
in (7), let us �rst start by clarifying its de�nition in the
multi-abstain class scenario:

L Abstain
Robust = max

� 1 ;:::;� n

1
n

nX

i =1

min
n

`xent
�
zL (x i + � i ); yi

�
;

min
m =1 ;:::;M

`xent
�
zL (x i + � i ); am

� o
:

(13)

This de�nition implies that the classi�cation is considered
“correct” for a given input if the predicted label is the ground-
truth label or if it is assigned to one of the abstain classes.
Since the maximization problem w.r.t.f � i g is nonconcave,
it is hard to even evaluateL Abstain

Robust. Thus, we minimize an
ef�ciently computable upper-bound of this loss function as
described in Theorem 4.1.

Theorem 4.1. Let `Abstain
Robust(x ; y) =

max
k � k� �

min
�

`xent
�
zL (x + � ); y

�
; min

m =1 ;:::;M
`xent

�
zL (x i + � i ); am

�
�

.

Then,

`Abstain
Robust(x ; y) � �̀Abstain

Robust(x ; y) = `xentnA 0 (J (x); y); (14)

where J (x) is a vector whose k-th compo-
nent equals Jk (x) as de�ned in (11) and

`xentnA 0 (x0; y) := � log

 
exp( eT

y zL (x 0 ))
P

i 2InA 0
exp( eT

i zL (x 0 ))

!

.

Here,I = f 1; : : : ; K; a 1; : : : ; aM g is the set of all classes
(true labels and abstain classes) andA 0 = f a1; : : : ; aM g
is the set of abstain classes.

Notice that the de�nition of̀ xentnA 0 (x0; y) removes the
terms corresponding to the abstain classes in the denomina-
tor. This de�nition is less restrictive toward abstain classes
compared to incorrect classes. Thus, for a given sample, it
is more advantageous for the network to classify it as an
abstain class instead of incorrect classi�cation. This mecha-
nism enhances the performance of the network on detecting
adversarial examples by abstain classes, while it does not
have an adverse effect on the performance of the network on
natural samples.Note that during the evaluation/test phase,
this loss function does not change the �nal prediction of the
network for a given input, since the winner (the entry with
the highest score) remains the same.

Overall, we upper-bound the loss in(7) by replacingL Robust

with the IBP relaxation approach utilized in Gowal et al.
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(2018); Sheikholeslami et al. (2021) and replacingL Abstain
Robust

with �L Abstain
Robust = 1

n

P n
i =1

�̀Abstain
Robust(x i ; yi ) presented in Theo-

rem 4.1. Thus our total training loss can be presented as:

L Total = �L Robust+ � 1 �L Abstain
Robust + � 2L Standard (15)

Algorithm 3 describes the procedure of optimizing(15)on
a joint classi�er and detector with multiple abstain classes.

Algorithm 3 Train a robust neural network on a training
data
1: Input : Batches of dataD1; : : : ; DR , step-size� .
2: for t = 1 ; : : : ; R do
3: Let (x1; y1); : : : ; (xN ; yN ) 2 D t

4: ComputeJo(x) 8 x 2 D t ; 8o 2 f 1; : : : ; K g by
Algorithm 1.

5: ComputeL Robustas described in Gowal et al. (2018)
on BatchDt .

6: Compute�L abstain
Robuston BatchDt using Theorem 4.1.

7: L = L � � r
� �L Robust+ � 1 �L abstain

Robust+ � 2L Standard
�

8: end for

4.1. Addressing model degeneracy
Having multiple abstain classes can potentially increase
the capacity of our classi�er to detect adversarial exam-
ples. However, as we will see in Figure 2 (10 abstains,
unregularized), several abstain classes collapse together and
capture similar adversarial patterns. Such a phenomenon,
which we referred to as “model degeneracy” and is illus-
trated with an example in Appendix F, will prevent us from
utilizing all abstain classes fully. To address this issue, we
impose a regularization term to the loss function such that
the network utilizes all abstain classes in balance. We aim
to make sure the� values are distributed nearly uniformly
and there are noidle abstain classes. Let� ik , zL � 1(x i ),
andyi be the abstain vector corresponding to the samplex i

verifying against the target classk, the output of the layer
L � 1, and the assigned label to the data pointx i respec-
tively. Therefore, the regularized veri�cation problem over
n given samples takes the following form:

min
� 1 ;:::; � n 2P

nX

i =1

X

k6= y i

max
z(x i ) � zL � 1 � �z(x i )

� ck (� ik )(W L zL � 1

+ bL ) + � k[

 1

M + 1
�

1
n(K � 1)

nX

j =1

X

o6= y i

� jo ]+ k2;

(16)

The above regularizer penalizes the objective function if the
average value of� coef�cient corresponding to a given ab-
stain class over all samples of the batch is smaller than
a threshold (the threshold is determined by the hyper-
parameter
 ). In other words, if an abstain class is not
contributing enough to the detection of adversarial samples,

it will be penalized accordingly. Note that if
 is larger, we
penalize anidle abstain class more.

Note that in the unregularized case, the optimization of pa-
rameters� ik are independent of each other. In contrast, by
adding the regularizer described in(16)we require to opti-
mize� ik parameters of different samples and target classes
jointly (they are coupled in the regularization term). Since
optimizing(16) over the set of alln samples is infeasible
for datasets with large number of samples, we solve the
problem over smaller batches of the data to reduce the com-
plexity of problem in each iteration. We utilize the same
Bergman divergence procedure used in Algorithm 1, while
the gradient with respect to� ik takes the regularization term
into account as well.

5. Numerical results
We devise a diverse set of experiments on shallow and deep
networks to investigate the effectiveness of our proposed
joint classi�er and detector with multiple abstain classes. To
train the neural networks on MNIST and CIFAR-10 datasets,
we use Algorithm 3 as a part of an optimizer scheduler. In
the �rst phase, we set� 1 = � 2 = 0 . Thus, the network is
trained without considering any abstain classes initially. In
the second phase we optimize the objective function(15),
where we linearly increase� from 0 to � train. In the last
phase, we further tune the network on the �xed� = � train

(see Appendix A for further details).

In the �rst set of experiments depicted in Figure 1, we com-
pare the performance of the shallow networks with the opti-
mal number of abstain classes to the single abstain network,
the network with an additional layer, and the network reg-
ularized to have balance between different abstain classes
(Equation 16). The shallow networks have one convolu-
tional layer with size256and1024for training on MNIST
and CIFAR-10 datasets respectively. This convolutional
layer is connected to the second (last) layer consisting of
K + M nodes whereK is the number of regular classes (10
for both MNIST and CIFAR-10 datasets) andM is the num-
ber of abstain classes. The optimal number of abstain classes
is obtained by changing the number of them fromM = 1
to M = 20 on both CIFAR-10 and MNIST datasets. The
optimal value for the network trained on MNIST isM = 3
andM = 4 for CIFAR-10 dataset. Moreover, we com-
pare the optimal multi-abstain shallow network to two other
baselines: One is the network with the number of abstain
classes equal to the number of regular classes (M = K ) and
is trained via the regularizer described in(16). The other
baseline is a network with one more layer compared to the
shallow network. Instead of the last layer in the shallow
network, this network hasK + M nodes in the layer one to
the last, andK + 1 nodes in the last layer (the same optimal
numbers forM are used for these networks). Ideally the set
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Figure 1.Performance of Multiple-abstain shallow networks on MNIST and CIFAR-10 datasets. We compared multiple abstain neural
networks (both regularized and non-regularized version) with the single abstain networks and networks with one more layer. The above
and below rows demonstrate the trade-off between standard and robust veri�ed accuracy on MNIST and CIFAR-10 datasets.

of models can be supported by such a network is a super-set
of the original shallow network. However, due to the train-
ing procedure (IBP) which is sensitive to higher number of
layers (the higher the number of layers, the looser the lower
and upper bounds), we obtain better results with the original
network with multiple abstain classes.

Next, in Figure 3, we investigate the effect of changing the
number of abstain classes of the shallow network described
above. As we observe, the unregularized networks are much
more sensitive to the change ofM than the regularized
version. This means, we can use the regularized network
with the same performance while it does not require to be
tuned for the optimalM . In the unregularized version, by
increasing the number of abstain classes fromM = 1 to
M = 5 we see improvement. However, after this threshold,
the network performance drops gradually such that forM =
10where the number of labels and abstain classes are equal
(M = K = 10) the performance of the network in this case
is even worse than the single-abstain network due to the
model degeneracy of the multi-abstain network. However,
the network trained on the regularized loss maintains the
performance whenM changes from the optimal value to
larger values. Moreover, the regularized networks have

superior performance compared to the networks with one
more layer.

Figure 2 demonstrates the performance of no abstain, single
abstain, and multiple abstain networks with and without
regularization on both natural and adversarial images. The
above �gure shows the distribution of natural images that
are classi�ed correctly, captured by the abstain classes, or
misclassi�ed. The below chart shows the percentage of
adversarial examples classi�ed correctly, or captured by
each abstain class (M = 10). The results are obtained by
training shallow neural networks on CIFAR-10 dataset. The
hyper-parameter
 is set to 1

K + M = 1
20 in (16).

Beside the shallow networks, the trade-off between standard
and veri�ed robust accuracy is superior on the deep networks
with multiple abstain classes compared to the networks with
the same structure having single or no abstain classes (See
Table 2 in the appendix). The structure of the trained deep
network is exactly as the one described in Sheikholeslami
et al. (2021).

6. Conclusion
We improved the trade-off between standard accuracy
and robust veri�able accuracy by introducing multiple ab-


