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Abstract

This work concerns the development of deep net-
works that are certifiably robust to adversarial
attacks. Joint robust classification-detection was
recently introduced as a certified defense mecha-
nism, where adversarial examples are either cor-
rectly classified or assigned to the “abstain” class.
In this work, we show that such provable frame-
work can be extended to networks with multiple
explicit abstain classes, where the adversarial ex-
amples are adaptively assigned to those. While
naively adding multiple abstain classes can lead
to “model degeneracy”, we propose a regulariza-
tion approach and a training method to counter
this degeneracy by promoting full use of the mul-
tiple abstain classes. Our experiments demon-
strate that the proposed approach consistently
achieves favorable standard vs. robust verified
accuracy tradeoff, outperforming state-of-the-art
algorithms for various choices of number of ab-
stain classes.

1. Introduction

Deep Neural Networks (DNNs) have revolutionized
many machine learning tasks such as image process-
ing (Krizhevsky et al., 2012; Zhu et al., 2021) and speech
recognition (Graves et al., 2013; Nassif et al., 2019). How-
ever, despite their superior performance, DNNs are highly
vulnerable to adversarial attacks and perform poorly on out-
of-distributions samples (Goodfellow et al., 2014; Liang
etal., 2017; Yuan et al., 2019). To address the vulnerability
of DNNs to adversarial attacks, the community have de-
signed various defense mechanisms that are robust against
adversarial attacks (Papernot et al., 2016; Jang et al., 2019;
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Goldblum et al., 2020; Madry et al., 2017; Huang et al.,
2021). These mechanisms provide robustness against cer-
tain types of attacks such as the Fast Gradient Sign Method
(FGSM) (Szegedy et al., 2013; Goodfellow et al., 2014).
However, the overwhelming majority of these defense mech-
anisms are highly ineffective against more complex attacks
such as adaptive and brute-force methods (Tramer et al.,
2020; Carlini & Wagner, 2017). This ineffectiveness neces-
sitates: 1) the design of rigorous verification approaches that
can measure the robustness of a given network; 2) the de-
velopment of defense mechanisms that are verifiably robust
against any attack strategy within the class of permissible
attack strategies.

To verify robustness of a given network against any attack
in a reasonable set of permissible attacks (e.g. £,-norm
ball around the given input data), one needs to solve a hard
non-convex optimization problem (see, e.g., Problem (1) in
this paper). Consequently, exact verifiers, such as (Tjeng
et al., 2017; Xiao et al., 2018), are not scalable to large
networks. To develop scalable verifiers, the community turn
to “inexact" verifiers. Such methods can only verify a sub-
set of perturbations to the input data that the network can
defend against successfully. This is typically achieved by
finding tractable lower-bounds for the verification optimiza-
tion problem. Gowal et al. (2018) finds such a lower-bound
by interval bound propagation (IBP) which is essentially
an efficient convex relaxation of the constraint sets in the
verification problem. Despite its simplicity, this approach
demonstrates a relatively superior performance compared
to prior works. IBP-CROWN (Zhang et al., 2019) combines
IBP with a novel linear relaxations to have a tighter ap-
proximation compared to standalone IBP. 3-Crown (Wang
et al., 2021) utilizes a branch-and-bound technique com-
bined with the linear bounds proposed by IBP-CROWN to
further tighten the relaxation gap. While 5-Crown demon-
strates a tremendous performance gain over other verifiers
such as Zhang et al. (2019); Fazlyab et al. (2019); Lu &
Kumar (2019), it cannot be used as a tool in large-scale
training procedures due to its computationally expensive
branch-and-bound search.

Another line of work for enhancing the performance of
certifiably robust neural networks relies on the idea of learn-
ing a detector alongside the classifier to capture adversar-
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ial and out-of-distribution samples. Instead of trying to 2. Background

classify adversarial images correctly, these works design a.1. Veri cation of feedforward neural networks

detectorto determine whether a given sample is natural/inconsider art. -layer feedforward neural network with ;
distribution or it is a crafted attack/out-of-distribution. Chen genoting the weight associated with layeandb; denoting

et al. (2020) train the detector on both in-distribution andine pias parameter of layerLet ;( ) denote the activation
out-of-distribution samples to learn a detector distinguishfynction applied at layer. Throughout the paper, we assume

ing these samples. Hendrycks & Gimpel (2016) develops ghe activation function is the same for all hidden layers, i.e.,
method based on a simple observation that, for real samples,() = ReLU(); 8i = 1;:::;L 1. Thus, our neural

the output of softmax layer is closer to eittieor 1 com-  network can be described as

pared to out-of-distribution and adversarial examples where

the softmax output entries are distributed more uniformly. zi= (Wizi 1+b); i=1:2::5L 1

DeVries & Taylor (2018); Sheikholeslami et al. (2020) learn

uncertainty regions around actual samples where the pre-

diction of the network remains the same. Interestingly, this i , ,
vherezy = x is the input to the neural network amdis

approach does not require out-of-distribution samples dut? ) L [k
ing training. Other approaches such as deep generati\}ge output of layer. Note that the activation function is not

models (Ren et al., 2019), self-supervised and ensemb%op_”eoI at the last layer. We consider a_superviseo_l (_:Iassi-
methods (Vyas et al., 2018; Chen et al., 2021) are also use§2tion task wherez, represents the logits. To explicitly

to learn out-of-distribution samples. However, typically ShOW_ the dependence pf on the input dqta, we use the
these methods are vulnerable to adversarial attacks and c&Rta“O”ZL (X), to denote logit values whenis used as the

be easily fooled by carefully designed out-of-distribution Input data point.

images (Fort, 2022). A more resilient approach is to jointlyGiven an inpuk with the ground-truth labej, and a pertur-
learn the detector and the classi er (Laidlaw & Feizi, 2019; bation selQ(xo; ) (€.9.C(Xo; ) = fxjkx Xoki 0),
Sheikholeslami et al., 2021) by adding an auxiliabstain  the network is provably robust against adversarial attacks
output class capturing adversarial samples. onxg if

zZL =Wpz 1+ Db

Building on these prior works, this paper extends the idea . T

of using a single abstain class to using multiple abstain 0 cotu. ) Gy zL(x); 8k6y; (1)
classes. We observe that naively adding multiple abstain

classes results in a model degeneracy phenomenon Wh%erecyk = e, e with e (resp. ey) being the stan-
all adversarial examples are assigned to a small fractiogard unit vector whosk-th row (resp.y-th row) is1 and
of abstain classes (while other abstain classes are not Ufhe other entries are zero. Conditi(t) implies that the
lized). To resolve this issue, we propose a regularizer thapgit score of the network for the true labglis always
balances the assignment of adversarial examples to abstaifeater than that of any other lalefor all x 2 C(xo; ).
classes. Our experiments demonstrate that utilizing multiplerhys, the network will classify all the points insi@Xxo; )
abstain classes in conjunction with the proper regularizacorrectly. The objective function in Equation (1) is non-
tion enhances the robust veri ed accuracy of joint deteCtonvex wherl 2. Itis customary in many works to move

tOI’S/C|aSSi ers on adversarial eXampIeS Wh”e maintainingthe non_convexity of the prob'em to the constraint set and
the standard accuracy of the classi er. reformulate Equation (1) as

Contributions. We propose a framework for training and ) T

veri cation of robust neural nets with multiple detection 0 zzzm(lxrl- )Cyk z; 8k 8 y; 2
classes. We generalize the IBP training and veri cation '

procedure, and -Crown veri er to networks consisting | nare Z(xo! )
pf a (_:Iassi er and multiple detection classes jointly. We C(xo; )g. This veri cation problem has a linear objective
identi 9d a “model degengracy" phenomenon where not aIIfunc;tion and a non-convex constraint set. Since both prob-
detection c!asse§ are utilized. To prevent model degeneracfgms(l) and(2) are non-convex, existing works proposed
and to avoid tuning the number of network detectors, W&y ianty computable lower-bounds for the optimal objec-
introduce a regularization approach guaranteeing that all d‘?l've value of them. For example, Gowal et al. (2018): Wong

= fzjz = z.(x) forsomex 2

) ) ) ; Wang et al. (2021) rely on mixed integer program-
a single detection class, we enhance the robust veri ed a?ﬁing and branch

curacy by more thaB% and2% on CIFAR-10 and MNIST

) ’ X X optimal objective value of (2). In what follows, we explain
datasets respectively for various perturbation sizes.

two popular and relatively successful approaches for solving
the veri cation problem (1) (or equivalently (2)) in detail.
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2.2. Veri cation of neural networks via interval bound
propagation (IBP)

Interval Bound Propagation (IBP) of Gowal et al. (2018)
tackles problem (2) by convexi cation of the constraint set

Gu = fx 2 C(xp; )j2 > 0g. Within each subdomain, the
neuron operates linearly and hence veri cation is easy. Thus
we can verify for each of these subdomains separately. If
we haveN unstable nodes, BAB algorithm requires the in-
vestigation o2N sub-domains in the worst-case-Crown

Z (Xp; ) to its convex hypercube super-$etxo); z(xo)],
i.e.,Z(Xo; ) [z(Xo0);z(xo)]. After this relaxation, prob-
lem (2) can be lower-bounded by the convex problem:

3)

proposes a heuristic for traversing all these subdomains: The
higher the absolute value of the corresponding lower-bound
of a node is, the sooner it is visited by the veri er. For
verifying each sub-problem, Wang et al. (2021) proposed
a lower-bounded which requires solving a maximization
problem over two parametersand :

min

T
Cyk Z
2(x0) z z(xo) ¥

The upper- and lower- bound¢x o) andz(x,) are obtained

by recursively nding the convex relaxation of the image of zzzm(ixnd )C;kz m;axg(x; ;)
the setC(xp; ) at each layer of the network. In particular, '
o ) y P where g(x: : )=(a+P )'x+q' +d : (5

for the adversarial sef(xg; ) = fxjkx Xgki 0,
we start fromzy(Xo) = Xo 1 andzp(xg) = xo + 1.
Then, the lower-boung, (xo) and upper-bound, (x) are
computed by the recursions:

Here, the matriXP and the vectorg; a andd are functions
of Wi;bi;z;z; ;and parameters. See Appendix D for
the precise de nition ofy. Notice that any choice df ; )

Zi (Xo) = (W;M + W ;jw); provides a valid lower bound for veri cation. However,
2 2 optimizing and in (5) leads to a tighter bound.
_ tZi 1Y% 4 o141 g,
zi(xo)= (Wi ———— ] Wyj] 5 ) o _ _
gi = 1 L 2.4. Robust classi cation of adversarial examples with
i=1;:::;L

detection

4

@ Sheikholeslami et al. (2021) improves the performance
One of the main advantages of IBP is its ef cient computa+tradeoff on natural and adversarial examples by introducing
tion: veri cation of a given input only requires two forward an auxiliary class for detecting adversarial examples. If
passes for nding the lower and upper bounds, followed bythis auxiliary class is selected as the output, the networks
a linear programming. “abstains" from declaring any of the originiél classes for
the given input. Let be the abstain class. The network
performs correctly on an adversarial image if it is classi ed
correctly (similar to robust networks without detectors) or it
is classi ed as the abstain class (detected as an adversarial

a certain limitation, n_amely the looseness Of Its Ia‘_yer'by'example). Hence, the network is veri ed against a certain
layer bounds of the input. To overcome this I|m|tat|on,CIaSSk if

tighter veri cation methods have been proposed in the liter-

ature (Singh et al., 2018; Zhang et al., 2019; Dathathri et al.,
2020; Wang et al., 2021). Among thesecrown (Wang

et al., 2021) utilizes the branch-and-bound technique to gen- . :
eralize and improve the IBP-CROWN proposed in Zhang"e" if the score of the true labglor the score of the abstain
et al. (2019). Leg; andz; be the estimated element-wise classa is larger than the score of claks

lower-bound and upper-bounds for the pre-activation value o o ]
of z;, i.e., z: z zi, where these lower and upper 2.5. Training a joint robust classi er and detector
) Ineny £ ’

bounds are obtained by the method in Zhang et al. (2019 train a neural network that can jointly detect and classify

Let 2; be the value we obtain by applying ReLU func- 5 gataset of images, Sheikholeslami et al. (2021) relies on
tion to zj. We say a neuron is unstable if its sign after e |0ss function of the form:

applying ReLU activation cannot be determined based on

only knowing the corresponding lower and upper bounds. (7)

That is, a neuron is unstable4f < 0 < z;. Forstable

neurons, no relaxation is needed to enforce convexity oivhere the terni signgargdenotes the standard loss when
(2) (since the neuron operates in a linear regime). On th@o adversariabexamples are considered. More precisely,

other hand, given an unstable neuron, they use branch-andssangard = i”:l “ent ZL (Xi);Yi , where yent is the

bound (BAB) approach to split the input range of the neuronstandard cross-entropy loss. The tdtynustin (7) rep-

into two sub-domain&; = fx 2 C(Xxo; )j& Ogand resentsthe worst-case adversarial loss used in (Madry et al.,

2.3. Veri cation of neural networks via -Crown

Despite its simplicity, IBP-based veri cation comes with

0 min  max(c,, z;cl 2);
227 (xo: ) ( yk ak )

(6)

Abstain
Robust +

Ltotal = LRrobustt 1L 2L standard
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2017), without considering the abstain class. Precisely, veried for input xy against a target clagsfor a given

image(x;y) if
11X
- - S+ )y .
L Robust Enaxn ni:l xent ZL (Xi i)Y 0 ZZZ”}Lr(‘),)maX C;—kZL;C;IkZL;:::;C;M ZL o (9)
st: k ik ; 8i=1;:::0n

_ Since the seZ (Xo; ) is highly nonconvex, verifying9)
Finally, the Robust-Abstain lodsRPs'@1is the minimum of  is computationally expensive. In the next two subsections,

the detector and the classi er losses: we present suf cient conditions fq©) based on IBP and
_ 0 -crown approaches.
LRost = mMax ——  min e Zu(Xi + )iYi
T = 3.1. Veri cation with IBP

et 2L (Xi + i3 @ Following the IBP approach to relax the nonconvex

st: Kk ikg ; 8i (8)  setZ(xp; ) leads to the following result:

In (7), tuning 1 and , controls the trade-off between Theorem 3.1. Condition(9) is satis ed if

standard and robust accuracy. Furthermore, to obtain non- - _

trivial results, IBP-relaxation should be incorporated during 33" , &, G( ) (Wize 1+ b); (10)

training for the minimization sub-problems knopystand -

Labstain(Sheikholeslami et al., 2021; Gowal et al., 2018). gk g y; js greater than 0. where P =
. M

robust =

f(oiii; Mm)i 2o i =1 08 =0;1:::;Mg;
3. Veri cation of neural networks with andce( ) = oCyk + 1Cayk  + M Cay k. Here, the
multiple abstain classes boundsz, ; andz_ ; are obtained according t¢4).

The robust veri ed accuracy of a joint classi er and detector Unlike (9), the condition in(10) is easy to verify computa-
can be enhanced by introducing multiple abstain classeonally. To understand this, let us de ne

instead of a single abstain class for detecting adversarial ex-

amples. This is simply because adding more classes would J,( )= max o )T (Weze 1+ b)) (11)
increase the capacity of the network in detecting adversarial 221z

examples. This observation is illustrated in a simple ex- o . L .
ample in Appendix F. Note that a network with multiple 1hen, our aim ir(10) is to minimizeJy( ) overP. First
abstain classes can be equivalently modeled by another n&tice that the maximization probled1) can be solved in
work with one more layer and a single abstain class. Thi§losed form as described in Step 1 of Algorithm 1. Con-
added layer can merge all abstain classes and reduce the&fgduently, one can rely on Danskin's Theorem (Danskin,
to a single classThus, anyL-layer neural network with 2012) to compute the subgradient of the functiy ).

multiple abstain classes can be equivalently modeled by NUS: to minimizeli() in (10), we can rely on the Breg-
anL + 1-layer neural network with a single abstain class. Man Proximal (sub)gradient method (see (Gutman & Pena,
However, the performance of veri ers such as IBP reduce<2018) and the references therein). This algorithm ig,guaran-
as we increase the number of layers. Thus, it is bene ciafe®d 0 nd  accurate solution tel0)in T = O(1=" )

to train/verify the originaL -layer neural network with mul- Iterations—see (Gutman & Pena, 2018, Corollary 2).

tiple abstain classes insteadlof+ 1 -layer network with a
single abstain class. This fact will be illustrated further inAlgorithm 1 IBP veri cation of networks with multiple
our experiments. Next, we present how one can verify @bstain classes

network with multiple abstain classes. 1. Parameters Stepsize > 0, number of iteration3 .

o . . 2: Initialize g=1and ;= :::= y =0:
Let_al, az;::;am beM ab_staln clgsses detectlng_ad_ver- 3 fort=0:1:::T do
sarial samples. A sample is considered adversarial if the [z, . #MWTc() O
output of the network is any of thel abstain classes. 4: Set[z,' ,}; = - %/ L : for
A neural network withK regular classes and abstain . [zo 1]; otherwise.

i - everyj .

classes outputs the label of é. given sample}@s c ettt - b Coml 2 (2 D W cenr) -
argmaxizf 1;:ka inam g[ZL (X)]I- . € m - 7 J_M:() Jt exp( 2 (ZLt 1)TW I Ca, B m
An input is veri ed if the network either correctly classi es f0;:::; Mg, wherea is de ned asy.

it or assigns it to any of the expliddl abstain classes. More  6: end for
formally and following equatioi6), the neural network is
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3.2. Veri cation with  -Crown instead of minimizing these two terms, we will minimize
their upper-bounds. Particularly, following (Sheikholeslami
et al., 2020, Equation (17)), we ugopustaS an upper-
bound toL ronust This upper-bound is obtained by the IBP
relaxation procedure described in subsection 2.2. To obtain
an upper-bound for the Robust-Abstain loss terfian

in (7), let us rst start by clarifying its de nition in the

multi-abstain class scenario:

While IBP veri cation is computationally ef cient, it is less
accurate than —Crown, as discussed earlier. Hence, to
obtain a more accurate veri cation, in this section we focus
on —Crown veri cation of networks with multiple abstain
classes. To this end, we will nd a suf cient condition f(®)
using the lower-bound technique (8) in —Crown. In
particular, by switching the minimization and maximization
in (9) and using the —Crown lower bound5), we can nd

a lower-bound of the form

Abstain 1xn n
: L = max — min - “yent ZL(Xi + )Y
min  maxfcl .z ;cl z el wzig Robust = W%, n ent ZL(Xi + i) Vi
. yk a1k am k -1
z 2Z (Xo; ) i o
max G(Xo; ; ; ): 12 min zZL(Xi + i);
P SR (Xo ) (12) m=l M xent ZL (Xi i) @m
(13)

The details of this inequality and the exact de nition of func-

tiO:’] (.3( ) is Eroyidﬁdhin 'gppgndiisz.' Notel_tg?t anygeasigle This de nition implies that the classi cation is considered
S0 L;}tmn t.o.t el ng .t andsi etfl )ISI afvr;l dOW%r- O;J_?] “correct” for a given input if the predicted label is the ground-
to the original veri cation problem (left-hand-side). Thus, truth label or if it is assigned to one of the abstain classes.

in .orc.Jer for(9r3 tch] btgsati_s ?d:_it suf cgs _':_0 nda f_easirt]JIe Since the maximization problem w.rft.;g is nonconcave,
(RI-’|S' f) 132uc tAIa .()r(]o’ 2’ ) i .A ° OLF?“m'?Et € itis hard to even evaluateR’san Thus, we minimize an
of(12)in Algorithm 2, we Ut.' ize AutoLirpalibrary ¢ ciently computable upper-bound of this loss function as
of (Zhang et al., 2019) for updating, and use Bregman : .
. . described in Theorem 4.1.

proximal subgradient method to updateand - See ap- Absia
pendix B. We use Euclidean norm Bregman divergence fof heorem 41 Let RobustO<; ) =
updating , and Shannon entropy Bregman divergence formax min = “xent zL (X + )iy ; MmN xent ZL (Xi + i) a@m

to obtain closed-form updates. K X m

Then,
Algorlthm'2 —Crown veri cation of networks with multi- sAbstainyy Ly Abstany gy = (J(X)Y); (14)
ple abstain classes
1: Input: number of iterationd , number of iterations in  where J(x) is a vector whose k-th compo-
the inner-loopTy, Step-size . nent equals Jk(x) as dened in (11) apd
2: fort=0:1;::: ;_T do _ _ . _ _ | exple] 2 (xo)
3: Update using AutoLirpa library (Zhang et al., xennao(Xoiy) = 00 P (er 2 o)
201 .
) 0 9)_ e Here,| = f1;:::;K;aq;:::;au gis the set of all classes
4. fork=0;1;:::;Todo .
. _ L @Gxo i where Twl. = (true labels and abstain classes) aAd = fa;;:::;au g
' = , C) I € e.[ I = is the set of abstain classes.
maxf O; wg is projection to non-negative orthant
6: new = o %'”GD:J(Z %? . 8m 2 Notice that the de nition of yenna,(Xo;Yy) removes the
= [Uexp2 =) terms corresponding to the abstain classes in the denomina-
f0;:::;Mg tor. This de nition is less restrictive toward abstain classes
7:  end for compared to incorrect classes. Thus, for a given sample, it
8: end for is more advantageous for the network to classify it as an
abstain class instead of incorrect classi cation. This mecha-
o ) ) nism enhances the performance of the network on detecting
4. Training of neural networks with multiple adversarial examples by abstain classes, while it does not
abstain classes have an adverse effect on the performance of the network on

natural samples.Note that during the evaluation/test phase,
this loss function does not change the nal prediction of the
network for a given input, since the winner (the entry with
the highest score) remains the same.

To train a neural network consisting of multiple abstain
classes, we follow a similar combination of loss functions
as in(7). While the last terml(stangarg C&N be computed
ef ciently, the rst and second terms cannot be computed
ef ciently because even evaluating the functidngpstand ~ Overall, we upper-bound the loss(n) by replacingl ropust

L Abstain requires maximizing nonconcave functions. Thuswith the IBP relaxation approach utilized in Gowal et al.
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(2018); Sheikholgﬁlami etal. (2021) and repladifgStan it will be penalized accordingly. Note that ifis larger, we
n

bust

with LA = 15 1 ~Abstainy;;y;) presented in Theo- penalize aridle abstain class more.

4.1. ini : . . S
rem Thus our total training loss can be presented Riote that in the unregularized case, the optimization of pa-

rameters ¥ are independent of each other. In contrast, by
adding the regularizer described(it6) we require to opti-
Algorithm 3 describes the procedure of optimiziig)on ~ mize * parameters of different samples and target classes
a joint classi er and detector with multiple abstain classes jointly (they are coupled in the regularization term). Since
optimizing (16) over the set of alh samples is infeasible
Algorithm 3 Train a robust neural network on a training for datasets with large number of samples, we solve the

— Abstain
L Total — L Robustt 1 L Robust T 2 L Standard (15)

data problem over smaller batches of the data to reduce the com-

1: Input: Batches of dat®,;:::; Dg, Step-size . plexity of problem in each iteration. We utilize the same
2. fort=1;:::;Rdo Bergman divergence procedure used in Algorithm 1, while
3 Let(Xx1;y1);:i:iii(XniYn) 2 Dy the gradient with respect td* takes the regularization term
4:  Computelo(x) 8x 2D¢; 802f1;:::;Kgby intoaccountas well.

Algorithm 1.
5:  Computel gonust@s described in Gowal et al. (2018) 5. Numerical results

on BatchDy.

Computel 2t@inon BatchD; using Theorem 4.1.  We devise a diverse set of experiments on shallow and deep

L=1L I Lrobustt 1L22@M+ 51 iandard _ne_ztworks _to investigate the_effectl\_/eness of_our proposed
end for joint classi er and detector with multiple abstain classes. To
train the neural networks on MNIST and CIFAR-10 datasets,
we use Algorithm 3 as a part of an optimizer scheduler. In
4.1. Addressing model degeneracy the rst phase, we set; = 5, = 0. Thus, the network is
Having multiple abstain classes can potentially increaserained without considering any abstain classes initially. In
the capacity of our classi er to detect adversarial examthe second phase we optimize the objective functics),
ples. However, as we will see in Figure 2 (10 abstainswhere we linearly increasefrom 0 t0 4in. In the last
unregularized), several abstain classes collapse together aptlase, we further tune the network on the xed ain
capture similar adversarial patterns. Such a phenomenogsee Appendix A for further details).
which we referred to as “model degeneracy” and is illus- . : -
trated with an example in Appendix F, will prevent us from Inthe rst set of experiments depicted in Figure 1 we com-
utilizing all abstain classes fully. To address this issue, weare the performance of the shallow networks with the opti-

impose a regularization term to the loss function such tha'?;]al nunTvbeli of.{ahbstam dﬂissesl tlo the smglctahabste:m nitwork,
the network utilizes all abstain classes in balance. We ai Ie '."e d or hWI t?nl ada Ena aye(;,_f?n etr)le WOF | reg-
to make sure the values are distributed nearly uniformly ularized to have balance between different abstain classes

and there are nigle abstain classes. LetX, z, 1(x;), (Equation 16). The shallow networks'h.ave one convolu-
andy; be the abstain vector corresponding to the sample tional layer with siz256 and1024for training on MNIST

verifying against the target claksthe output of the layer ?nd QIFAR-lO Sz[?sif respecgley.t -Il-h's convo!utt_lonalf
L 1, and the assigned label to the data paintespec- ayer is connected to the second (last) layer consisting o

tively. Therefore, the regularized veri cation problem over :f +b Mh rll\?gltla;_l\_/vhe(;e((:lllzs;gelrgu?ber of reg':;tlﬁr cLassdsO(
n given samples takes the following form: or bot an -10 datasets) ahtl is the num-

ber of abstain classes. The optimal number of abstain classes

© N o

X X _ is obtained by changing the number of them frivm= 1
_.min o sy MAX a( "YWLzl 1 toM =20 on both CIFAR-10 and MNIST datasets. The
""" i=1 kéy; ' optimal value for the network trained on MNISTN4 = 3
1 1 X X andM = 4 for CIFAR-10 dataset. Moreover, we com-
+ b))+ K7 nK D) 0], K2 pare the optimal multi-abstain shallow network to two other
j=1 o8y baselines: One is the network with the number of abstain

(16)  classes equal to the number of regular classes( K ) and

is trained via the regularizer described(ir6). The other

The above regularizer pgnalizes the objeptive fungtion if theoaseline is a network with one more layer compared to the
average value of coef cient corresponding to a given ab- shallow network. Instead of the last layer in the shallow

stain class over all samples of the batch is smaller thaﬂ : ;
etwork, this network hal + M nodes in the layer one to
a threshold (the threshold is determined by the hyper: y

| h ds. if bstain ol . the last, anK +1 nodes in the last layer (the same optimal
paramet_er ). In other words, i ana stain ¢ ass 1 Ot humbers foM are used for these networks). ldeally the set
contributing enough to the detection of adversarial samples,



Robustness via multiple detection classes

Figure 1.Performance of Multiple-abstain shallow networks on MNIST and CIFAR-10 datasets. We compared multiple abstain neural
networks (both regularized and non-regularized version) with the single abstain networks and networks with one more layer. The above
and below rows demonstrate the trade-off between standard and robust veri ed accuracy on MNIST and CIFAR-10 datasets.

of models can be supported by such a network is a super-sstiperior performance compared to the networks with one
of the original shallow network. However, due to the train-more layer.

N9 procedur_e (IBP) which is sensitive to higher number OfFigure 2 demonstrates the performance of no abstain, single
layers (the higher the number of layers, the looser the lower

. . .. —abstain, and multiple abstain networks with and without
and upper bounds), we obtain better results with the origina S -
. ; . regularization on both natural and adversarial images. The
network with multiple abstain classes.

above gure shows the distribution of natural images that
Next, in Figure 3, we investigate the effect of changing theare classi ed correctly, captured by the abstain classes, or
number of abstain classes of the shallow network describethisclassi ed. The below chart shows the percentage of
above. As we observe, the unregularized networks are mucadversarial examples classi ed correctly, or captured by
more sensitive to the change BF than the regularized each abstain clasdi( = 10). The results are obtained by
version. This means, we can use the regularized networkaining shallow neural networks on CIFAR-10 dataset. The
with the same performance while it does not require to béwyper-parameter is set toﬁ = % in (16).

tuned for the optimaM . In the unregularized version, by

: : : Beside the shallow networks, the trade-off between standard
increasing the number of abstain classes fidn= 1 to

_ : . and veri ed robust accuracy is superior on the deep networks
M =5 we see improvement. However, after this threshold, . : . .
tith multiple abstain classes compared to the networks with

the network performance drops gradually_such thabor tqe same structure having single or no abstain classes (See
10where the number of labels and abstain classes are equa

(M = K = 10) the performance of the network in this case able 2 n the appendix). The structpre o.f the trgmed deep
: . . network is exactly as the one described in Sheikholeslami
is even worse than the single-abstain network due to the

. . et al. (2021).
model degeneracy of the multi-abstain network. However,

the network trained on the regularized loss maintains thg, Conclusion

performance wheM changes from the optimal value o \ye improved the trade-off between standard accuracy
larger values. Moreover, the regularized networks have,hq robust veri able accuracy by introducing multiple ab-



