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Abstract

This work concerns the development of deep net-
works that are certifiably robust to adversarial
attacks. Joint robust classification-detection was
recently introduced as a certified defense mecha-
nism, where adversarial examples are either cor-
rectly classified or assigned to the “abstain” class.
In this work, we show that such provable frame-
work can be extended to networks with multiple
explicit abstain classes, where the adversarial ex-
amples are adaptively assigned to those. While
naïvely adding multiple abstain classes can lead
to “model degeneracy”, we propose a regulariza-
tion approach and a training method to counter
this degeneracy by promoting full use of the mul-
tiple abstain classes. Our experiments demon-
strate that the proposed approach consistently
achieves favorable standard vs. robust verified
accuracy tradeoff, outperforming state-of-the-art
algorithms for various choices of number of ab-
stain classes.

1. Introduction
Deep Neural Networks (DNNs) have revolutionized
many machine learning tasks such as image process-
ing (Krizhevsky et al., 2012; Zhu et al., 2021) and speech
recognition (Graves et al., 2013; Nassif et al., 2019). How-
ever, despite their superior performance, DNNs are highly
vulnerable to adversarial attacks and perform poorly on out-
of-distributions samples (Goodfellow et al., 2014; Liang
et al., 2017; Yuan et al., 2019). To address the vulnerability
of DNNs to adversarial attacks, the community have de-
signed various defense mechanisms that are robust against
adversarial attacks (Papernot et al., 2016; Jang et al., 2019;
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Goldblum et al., 2020; Madry et al., 2017; Huang et al.,
2021). These mechanisms provide robustness against cer-
tain types of attacks such as the Fast Gradient Sign Method
(FGSM) (Szegedy et al., 2013; Goodfellow et al., 2014).
However, the overwhelming majority of these defense mech-
anisms are highly ineffective against more complex attacks
such as adaptive and brute-force methods (Tramer et al.,
2020; Carlini & Wagner, 2017). This ineffectiveness neces-
sitates: 1) the design of rigorous verification approaches that
can measure the robustness of a given network; 2) the de-
velopment of defense mechanisms that are verifiably robust
against any attack strategy within the class of permissible
attack strategies.

To verify robustness of a given network against any attack
in a reasonable set of permissible attacks (e.g. `p-norm
ball around the given input data), one needs to solve a hard
non-convex optimization problem (see, e.g., Problem (1) in
this paper). Consequently, exact verifiers, such as (Tjeng
et al., 2017; Xiao et al., 2018), are not scalable to large
networks. To develop scalable verifiers, the community turn
to “inexact" verifiers. Such methods can only verify a sub-
set of perturbations to the input data that the network can
defend against successfully. This is typically achieved by
finding tractable lower-bounds for the verification optimiza-
tion problem. Gowal et al. (2018) finds such a lower-bound
by interval bound propagation (IBP) which is essentially
an efficient convex relaxation of the constraint sets in the
verification problem. Despite its simplicity, this approach
demonstrates a relatively superior performance compared
to prior works. IBP-CROWN (Zhang et al., 2019) combines
IBP with a novel linear relaxations to have a tighter ap-
proximation compared to standalone IBP. β-Crown (Wang
et al., 2021) utilizes a branch-and-bound technique com-
bined with the linear bounds proposed by IBP-CROWN to
further tighten the relaxation gap. While β-Crown demon-
strates a tremendous performance gain over other verifiers
such as Zhang et al. (2019); Fazlyab et al. (2019); Lu &
Kumar (2019), it cannot be used as a tool in large-scale
training procedures due to its computationally expensive
branch-and-bound search.

Another line of work for enhancing the performance of
certifiably robust neural networks relies on the idea of learn-
ing a detector alongside the classifier to capture adversar-
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ial and out-of-distribution samples. Instead of trying to
classify adversarial images correctly, these works design a
detector to determine whether a given sample is natural/in-
distribution or it is a crafted attack/out-of-distribution. Chen
et al. (2020) train the detector on both in-distribution and
out-of-distribution samples to learn a detector distinguish-
ing these samples. Hendrycks & Gimpel (2016) develops a
method based on a simple observation that, for real samples,
the output of softmax layer is closer to either 0 or 1 com-
pared to out-of-distribution and adversarial examples where
the softmax output entries are distributed more uniformly.
DeVries & Taylor (2018); Sheikholeslami et al. (2020) learn
uncertainty regions around actual samples where the pre-
diction of the network remains the same. Interestingly, this
approach does not require out-of-distribution samples dur-
ing training. Other approaches such as deep generative
models (Ren et al., 2019), self-supervised and ensemble
methods (Vyas et al., 2018; Chen et al., 2021) are also used
to learn out-of-distribution samples. However, typically
these methods are vulnerable to adversarial attacks and can
be easily fooled by carefully designed out-of-distribution
images (Fort, 2022). A more resilient approach is to jointly
learn the detector and the classifier (Laidlaw & Feizi, 2019;
Sheikholeslami et al., 2021) by adding an auxiliary abstain
output class capturing adversarial samples.

Building on these prior works, this paper extends the idea
of using a single abstain class to using multiple abstain
classes. We observe that naïvely adding multiple abstain
classes results in a model degeneracy phenomenon where
all adversarial examples are assigned to a small fraction
of abstain classes (while other abstain classes are not uti-
lized). To resolve this issue, we propose a regularizer that
balances the assignment of adversarial examples to abstain
classes. Our experiments demonstrate that utilizing multiple
abstain classes in conjunction with the proper regulariza-
tion enhances the robust verified accuracy of joint detec-
tors/classifiers on adversarial examples while maintaining
the standard accuracy of the classifier.

Contributions. We propose a framework for training and
verification of robust neural nets with multiple detection
classes. We generalize the IBP training and verification
procedure, and β-Crown verifier to networks consisting
of a classifier and multiple detection classes jointly. We
identified a “model degeneracy" phenomenon where not all
detection classes are utilized. To prevent model degeneracy
and to avoid tuning the number of network detectors, we
introduce a regularization approach guaranteeing that all de-
tectors contributing to the detection of adversarial examples.
Our experiments show that, compared to the networks with
a single detection class, we enhance the robust verified ac-
curacy by more than 5% and 2% on CIFAR-10 and MNIST
datasets respectively for various perturbation sizes.

2. Background
2.1. Verification of feedforward neural networks
Consider an L-layer feedforward neural network with Wi

denoting the weight associated with layer i, and bi denoting
the bias parameter of layer i. Let σi(·) denote the activation
function applied at layer i. Throughout the paper, we assume
the activation function is the same for all hidden layers, i.e.,
σi(·) = ReLU(·), ∀i = 1, . . . , L − 1. Thus, our neural
network can be described as

zi = σ(Wizi−1 + bi), i = 1, 2, . . . , L− 1,

zL = WLzL−1 + bL

where z0 = x is the input to the neural network and zi is
the output of layer i. Note that the activation function is not
applied at the last layer. We consider a supervised classi-
fication task where zL represents the logits. To explicitly
show the dependence of zL on the input data, we use the
notation zL(x) to denote logit values when x is used as the
input data point.

Given an input x0 with the ground-truth label y, and a pertur-
bation set C(x0, ε) (e.g. C(x0, ε) = {x | ‖x− x0‖∞ ≤ ε}),
the network is provably robust against adversarial attacks
on x0 if

0 ≤ min
x∈C(x0,ε)

cTykzL(x), ∀k 6= y, (1)

where cyk = ey − ek with ek (resp. ey) being the stan-
dard unit vector whose k-th row (resp. y-th row) is 1 and
the other entries are zero. Condition (1) implies that the
logit score of the network for the true label y is always
greater than that of any other label k for all x ∈ C(x0, ε).
Thus, the network will classify all the points inside C(x0, ε)
correctly. The objective function in Equation (1) is non-
convex when L ≥ 2. It is customary in many works to move
the non-convexity of the problem to the constraint set and
reformulate Equation (1) as

0 ≤ min
z∈Z(x0,ε)

cTykz, ∀k 6= y, (2)

where Z(x0, ε) = {z | z = zL(x) for some x ∈
C(x0, ε)}. This verification problem has a linear objective
function and a non-convex constraint set. Since both prob-
lems (1) and (2) are non-convex, existing works proposed
efficiently computable lower-bounds for the optimal objec-
tive value of them. For example, Gowal et al. (2018); Wong
& Kolter (2018) utilize convex relaxation, while Tjeng et al.
(2017); Wang et al. (2021) rely on mixed integer program-
ming and branch-and-bound to find lower-bounds for the
optimal objective value of (2). In what follows, we explain
two popular and relatively successful approaches for solving
the verification problem (1) (or equivalently (2)) in detail.
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2.2. Verification of neural networks via interval bound
propagation (IBP)

Interval Bound Propagation (IBP) of Gowal et al. (2018)
tackles problem (2) by convexification of the constraint set
Z(x0, ε) to its convex hypercube super-set [z(x0), z̄(x0)],
i.e., Z(x0, ε) ⊆ [z(x0), z̄(x0)]. After this relaxation, prob-
lem (2) can be lower-bounded by the convex problem:

min
z(x0)≤z≤z̄(x0)

cTykz (3)

The upper- and lower- bounds z(x0) and z̄(x0) are obtained
by recursively finding the convex relaxation of the image of
the set C(x0, ε) at each layer of the network. In particular,
for the adversarial set C(x0, ε) = {x | ‖x − x0‖∞ ≤ ε},
we start from z0(x0) = x0 − ε1 and z̄0(x0) = x0 + ε1.
Then, the lower-bound zL(x0) and upper-bound z̄L(x0) are
computed by the recursions:

z̄i(x0) = σ(WT
i

z̄i−1 + zi−1

2
+ |WT

i |
z̄i−1 − zi−1

2
),

zi(x0) = σ(WT
i

z̄i−1 + zi−1

2
− |WT

i |
z̄i−1 − zi−1

2
),

∀i = 1, . . . , L.

(4)

One of the main advantages of IBP is its efficient computa-
tion: verification of a given input only requires two forward
passes for finding the lower and upper bounds, followed by
a linear programming.

2.3. Verification of neural networks via β-Crown

Despite its simplicity, IBP-based verification comes with
a certain limitation, namely the looseness of its layer-by-
layer bounds of the input. To overcome this limitation,
tighter verification methods have been proposed in the liter-
ature (Singh et al., 2018; Zhang et al., 2019; Dathathri et al.,
2020; Wang et al., 2021). Among these, β-crown (Wang
et al., 2021) utilizes the branch-and-bound technique to gen-
eralize and improve the IBP-CROWN proposed in Zhang
et al. (2019). Let zi and z̄i be the estimated element-wise
lower-bound and upper-bounds for the pre-activation value
of zi, i.e., zi ≤ zi ≤ z̄i, where these lower and upper
bounds are obtained by the method in Zhang et al. (2019).
Let ẑi be the value we obtain by applying ReLU func-
tion to zi. We say a neuron is unstable if its sign after
applying ReLU activation cannot be determined based on
only knowing the corresponding lower and upper bounds.
That is, a neuron is unstable if zi < 0 < z̄i. For stable
neurons, no relaxation is needed to enforce convexity of
σ(z) (since the neuron operates in a linear regime). On the
other hand, given an unstable neuron, they use branch-and-
bound (BAB) approach to split the input range of the neuron
into two sub-domains Cil = {x ∈ C(x0, ε)| ẑi ≤ 0} and

Ciu = {x ∈ C(x0, ε)| ẑi > 0}. Within each subdomain, the
neuron operates linearly and hence verification is easy. Thus
we can verify for each of these subdomains separately. If
we have N unstable nodes, BAB algorithm requires the in-
vestigation of 2N sub-domains in the worst-case. β-Crown
proposes a heuristic for traversing all these subdomains: The
higher the absolute value of the corresponding lower-bound
of a node is, the sooner it is visited by the verifier. For
verifying each sub-problem, Wang et al. (2021) proposed
a lower-bounded which requires solving a maximization
problem over two parameters α and β:

min
z∈Z(x0,ε)

cTykz ≥ max
α,β

g(x,α,β)

where g(x,α,β) = (a + Pαβ)Tx + qTαβ + dα. (5)

Here, the matrix P and the vectors q,a and d are functions
of Wi,bi, zi, z̄i,α, and β parameters. See Appendix D for
the precise definition of g. Notice that any choice of (α,β)
provides a valid lower bound for verification. However,
optimizing α and β in (5) leads to a tighter bound.

2.4. Robust classification of adversarial examples with
detection

Sheikholeslami et al. (2021) improves the performance
tradeoff on natural and adversarial examples by introducing
an auxiliary class for detecting adversarial examples. If
this auxiliary class is selected as the output, the networks
“abstains" from declaring any of the original K classes for
the given input. Let a be the abstain class. The network
performs correctly on an adversarial image if it is classified
correctly (similar to robust networks without detectors) or it
is classified as the abstain class (detected as an adversarial
example). Hence, the network is verified against a certain
class k if

0 ≤ min
z∈Z(x0,ε)

max(cTykz, c
T
akz), (6)

i.e., if the score of the true label y or the score of the abstain
class a is larger than the score of class k.

2.5. Training a joint robust classifier and detector

To train a neural network that can jointly detect and classify
a dataset of images, Sheikholeslami et al. (2021) relies on
the loss function of the form:

LTotal = LRobust + λ1L
Abstain
Robust + λ2LStandard, (7)

where the term LStandard denotes the standard loss when
no adversarial examples are considered. More precisely,
LStandard = 1

n

∑n
i=1 `xent

(
zL(xi), yi

)
, where `xent is the

standard cross-entropy loss. The term LRobust in (7) rep-
resents the worst-case adversarial loss used in (Madry et al.,
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2017), without considering the abstain class. Precisely,

LRobust = max
δ1,...,δn

1

n

n∑
i=1

`xent
(
zL(xi + δi), yi

)
s.t. ‖δi‖∞ ≤ ε, ∀i = 1, . . . , n.

Finally, the Robust-Abstain loss LAbstain
Robust is the minimum of

the detector and the classifier losses:

LAbstain
Robust = max

δ1,...,δn

1

n

n∑
i=1

min
(
`xent
(
zL(xi + δi), yi

)
,

`xent
(
zL(xi + δi), a

))
s.t. ‖δi‖∞ ≤ ε, ∀i (8)

In (7), tuning λ1 and λ2 controls the trade-off between
standard and robust accuracy. Furthermore, to obtain non-
trivial results, IBP-relaxation should be incorporated during
training for the minimization sub-problems in Lrobust and
Labstain

robust (Sheikholeslami et al., 2021; Gowal et al., 2018).

3. Verification of neural networks with
multiple abstain classes

The robust verified accuracy of a joint classifier and detector
can be enhanced by introducing multiple abstain classes
instead of a single abstain class for detecting adversarial ex-
amples. This is simply because adding more classes would
increase the capacity of the network in detecting adversarial
examples. This observation is illustrated in a simple ex-
ample in Appendix F. Note that a network with multiple
abstain classes can be equivalently modeled by another net-
work with one more layer and a single abstain class. This
added layer can merge all abstain classes and reduce them
to a single class. Thus, any L-layer neural network with
multiple abstain classes can be equivalently modeled by
an L+ 1-layer neural network with a single abstain class.
However, the performance of verifiers such as IBP reduces
as we increase the number of layers. Thus, it is beneficial
to train/verify the original L-layer neural network with mul-
tiple abstain classes instead of L+ 1-layer network with a
single abstain class. This fact will be illustrated further in
our experiments. Next, we present how one can verify a
network with multiple abstain classes.

Let a1, a2, . . . , aM be M abstain classes detecting adver-
sarial samples. A sample is considered adversarial if the
output of the network is any of the M abstain classes.
A neural network with K regular classes and M abstain
classes outputs the label of a given sample as ŷ(x) =
argmaxi∈{1,...,k,a1,...,aM}[zL(x)]i.

An input is verified if the network either correctly classifies
it or assigns it to any of the explicitM abstain classes. More
formally and following equation (6), the neural network is

verified for input x0 against a target class k for a given
image (x, y) if

0 ≤ min
z∈Z(x0,ε)

max
{
cTykzL, c

T
a1kzL, . . . , c

T
aMkzL

}
, (9)

Since the set Z(x0, ε) is highly nonconvex, verifying (9)
is computationally expensive. In the next two subsections,
we present sufficient conditions for (9) based on IBP and
β-crown approaches.

3.1. Verification with IBP

Following the IBP approach to relax the nonconvex
set Z(x0, ε) leads to the following result:

Theorem 3.1. Condition (9) is satisfied if

min
η∈P

max
zL−1≤zL−1≤z̄L−1

−ck(η)T (WLzL−1 + bL), (10)

∀k 6= y, is greater than 0. where P =
{(η0, . . . , ηM )|

∑M
i=0 ηi = 1, ηi ≥ 0,∀i = 0, 1, . . . ,M},

and ck(η) = η0cyk + η1ca1k · · · + ηMcaMk. Here, the
bounds zL−1 and z̄L−1 are obtained according to (4).

Unlike (9), the condition in (10) is easy to verify computa-
tionally. To understand this, let us define

Jk(η) = max
z≤zL−1≤z̄

−ck(η)T (WLzL−1 + bL). (11)

Then, our aim in (10) is to minimize Jk(η) over P . First
notice that the maximization problem (11) can be solved in
closed form as described in Step 1 of Algorithm 1. Con-
sequently, one can rely on Danskin’s Theorem (Danskin,
2012) to compute the subgradient of the function Jk(·).
Thus, to minimize Jk(·) in (10), we can rely on the Breg-
man proximal (sub)gradient method (see (Gutman & Pena,
2018) and the references therein). This algorithm is guaran-
teed to find ε− accurate solution to (10) in T = O(1/

√
ε)

iterations–see (Gutman & Pena, 2018, Corollary 2).

Algorithm 1 IBP verification of networks with multiple
abstain classes

1: Parameters: Stepsize ν > 0, number of iterations T .
2: Initialize η0 = 1 and η1 = . . . = ηM = 0.
3: for t = 0, 1, . . . , T do

4: Set [z∗tL−1]j =

{
[zL−1]j if [WT

Lc(η)]j ≥ 0

[z̄L−1]j otherwise.
, for

every j.

5: Set ηt+1
m =

ηtm exp(−2ν(z∗tL−1)TWT
Lcamk)∑M

j=0 η
t
j exp(−2ν(z∗tL−1)TWT

Lcajk)
, ∀m ∈

{0, . . . ,M}, where a0 is defined as y.
6: end for
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3.2. Verification with β-Crown

While IBP verification is computationally efficient, it is less
accurate than β–Crown, as discussed earlier. Hence, to
obtain a more accurate verification, in this section we focus
on β–Crown verification of networks with multiple abstain
classes. To this end, we will find a sufficient condition for (9)
using the lower-bound technique of (5) in β–Crown. In
particular, by switching the minimization and maximization
in (9) and using the β–Crown lower bound (5), we can find
a lower-bound of the form

min
zL∈Z(x0,ε)

max{cTykzL, cTa1kzL, . . . , c
T
aMkzL} ≥

max
η∈P,α,β≥0

G(x0,α,β,η). (12)

The details of this inequality and the exact definition of func-
tion G(·) is provided in Appendix E. Note that any feasible
solution to the right hand side of (12) is a valid lower-bound
to the original verification problem (left-hand-side). Thus,
in order for (9) to be satisfied, it suffices to find a feasible
(α,β,η) such that G(x0,α,β,η) ≥ 0. To optimize the
RHS of (12) in Algorithm 2, we utilize AutoLirpa library
of (Zhang et al., 2019) for updating α, and use Bregman
proximal subgradient method to update α and η – See ap-
pendix B. We use Euclidean norm Bregman divergence for
updating β, and Shannon entropy Bregman divergence for
η to obtain closed-form updates.

Algorithm 2 β–Crown verification of networks with multi-
ple abstain classes

1: Input: number of iterations T , number of iterations in
the inner-loop T0, Step-size γ.

2: for t = 0, 1, . . . , T do
3: Update α using AutoLirpa library (Zhang et al.,

2019)
4: for k = 0, 1, . . . , T0 do
5: β = [β + γ ∂G(x0,α,β,η

∂β ]+, where [w]+ =

max{0, w} is projection to non-negative orthant

6: ηnew
m =

ηold
m exp(2γ

∂G(x0,α,β,η)
∂ηm

)∑M
j=0 η

old
j exp(2γ

∂G(x0,α,β,η)
∂ηj

)
, ∀m ∈

{0, . . . ,M}
7: end for
8: end for

4. Training of neural networks with multiple
abstain classes

To train a neural network consisting of multiple abstain
classes, we follow a similar combination of loss functions
as in (7). While the last term (LStandard) can be computed
efficiently, the first and second terms cannot be computed
efficiently because even evaluating the functions LRobust and
LAbstain

Robust requires maximizing nonconcave functions. Thus,

instead of minimizing these two terms, we will minimize
their upper-bounds. Particularly, following (Sheikholeslami
et al., 2020, Equation (17)), we use L̄Robust as an upper-
bound to LRobust. This upper-bound is obtained by the IBP
relaxation procedure described in subsection 2.2. To obtain
an upper-bound for the Robust-Abstain loss term LAbstain

Robust
in (7), let us first start by clarifying its definition in the
multi-abstain class scenario:

LAbstain
Robust = max

δ1,...,δn

1

n

n∑
i=1

min
{
`xent

(
zL(xi + δi), yi

)
,

min
m=1,...,M

`xent
(
zL(xi + δi), am

)}
.

(13)

This definition implies that the classification is considered
“correct” for a given input if the predicted label is the ground-
truth label or if it is assigned to one of the abstain classes.
Since the maximization problem w.r.t. {δi} is nonconcave,
it is hard to even evaluate LAbstain

Robust . Thus, we minimize an
efficiently computable upper-bound of this loss function as
described in Theorem 4.1.

Theorem 4.1. Let `Abstain
Robust (x, y) =

max
‖δ‖≤ε

min

{
`xent
(
zL(x+ δ), y

)
, min
m=1,...,M

`xent
(
zL(xi + δi), am

)}
.

Then,

`Abstain
Robust (x, y) ≤ ¯̀Abstain

Robust (x, y) = `xent\A0
(J(x), y), (14)

where J(x) is a vector whose k-th compo-
nent equals Jk(x) as defined in (11) and

`xent\A0
(x0, y) := − log

(
exp(eTy zL(x0))∑

i∈I\A0
exp(eTi zL(x0))

)
.

Here, I = {1, . . . ,K, a1, . . . , aM} is the set of all classes
(true labels and abstain classes) and A0 = {a1, . . . , aM}
is the set of abstain classes.

Notice that the definition of `xent\A0
(x0, y) removes the

terms corresponding to the abstain classes in the denomina-
tor. This definition is less restrictive toward abstain classes
compared to incorrect classes. Thus, for a given sample, it
is more advantageous for the network to classify it as an
abstain class instead of incorrect classification. This mecha-
nism enhances the performance of the network on detecting
adversarial examples by abstain classes, while it does not
have an adverse effect on the performance of the network on
natural samples.Note that during the evaluation/test phase,
this loss function does not change the final prediction of the
network for a given input, since the winner (the entry with
the highest score) remains the same.

Overall, we upper-bound the loss in (7) by replacing LRobust
with the IBP relaxation approach utilized in Gowal et al.
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(2018); Sheikholeslami et al. (2021) and replacing LAbstain
Robust

with L̄Abstain
Robust = 1

n

∑n
i=1

¯̀Abstain
Robust (xi, yi) presented in Theo-

rem 4.1. Thus our total training loss can be presented as:

LTotal = L̄Robust + λ1L̄
Abstain
Robust + λ2LStandard (15)

Algorithm 3 describes the procedure of optimizing (15) on
a joint classifier and detector with multiple abstain classes.

Algorithm 3 Train a robust neural network on a training
data

1: Input: Batches of data D1, . . . ,DR, step-size ν.
2: for t = 1, . . . , R do
3: Let (x1, y1), . . . , (xN , yN ) ∈ Dt
4: Compute Jo(x) ∀ x ∈ Dt, ∀o ∈ {1, . . . ,K} by

Algorithm 1.
5: Compute LRobust as described in Gowal et al. (2018)

on Batch Dt.
6: Compute L̄abstain

Robust on Batch Dt using Theorem 4.1.
7: L = L− ν∇

(
L̄Robust + λ1L̄

abstain
Robust + λ2LStandard

)
8: end for

4.1. Addressing model degeneracy
Having multiple abstain classes can potentially increase
the capacity of our classifier to detect adversarial exam-
ples. However, as we will see in Figure 2 (10 abstains,
unregularized), several abstain classes collapse together and
capture similar adversarial patterns. Such a phenomenon,
which we referred to as “model degeneracy” and is illus-
trated with an example in Appendix F, will prevent us from
utilizing all abstain classes fully. To address this issue, we
impose a regularization term to the loss function such that
the network utilizes all abstain classes in balance. We aim
to make sure the η values are distributed nearly uniformly
and there are no idle abstain classes. Let ηik, zL−1(xi),
and yi be the abstain vector corresponding to the sample xi
verifying against the target class k, the output of the layer
L − 1, and the assigned label to the data point xi respec-
tively. Therefore, the regularized verification problem over
n given samples takes the following form:

min
η1,...,ηn∈P

n∑
i=1

∑
k 6=yi

max
z(xi)≤zL−1≤z̄(xi)

−ck(ηik)(WLzL−1

+ bL) + µ‖[ γ1

M + 1
− 1

n(K − 1)

n∑
j=1

∑
o6=yi

ηjo]+‖2,

(16)

The above regularizer penalizes the objective function if the
average value of η coefficient corresponding to a given ab-
stain class over all samples of the batch is smaller than
a threshold (the threshold is determined by the hyper-
parameter γ). In other words, if an abstain class is not
contributing enough to the detection of adversarial samples,

it will be penalized accordingly. Note that if γ is larger, we
penalize an idle abstain class more.

Note that in the unregularized case, the optimization of pa-
rameters ηik are independent of each other. In contrast, by
adding the regularizer described in (16) we require to opti-
mize ηik parameters of different samples and target classes
jointly (they are coupled in the regularization term). Since
optimizing (16) over the set of all n samples is infeasible
for datasets with large number of samples, we solve the
problem over smaller batches of the data to reduce the com-
plexity of problem in each iteration. We utilize the same
Bergman divergence procedure used in Algorithm 1, while
the gradient with respect to ηik takes the regularization term
into account as well.

5. Numerical results
We devise a diverse set of experiments on shallow and deep
networks to investigate the effectiveness of our proposed
joint classifier and detector with multiple abstain classes. To
train the neural networks on MNIST and CIFAR-10 datasets,
we use Algorithm 3 as a part of an optimizer scheduler. In
the first phase, we set λ1 = λ2 = 0. Thus, the network is
trained without considering any abstain classes initially. In
the second phase we optimize the objective function (15),
where we linearly increase ε from 0 to εtrain. In the last
phase, we further tune the network on the fixed ε = εtrain
(see Appendix A for further details).

In the first set of experiments depicted in Figure 1, we com-
pare the performance of the shallow networks with the opti-
mal number of abstain classes to the single abstain network,
the network with an additional layer, and the network reg-
ularized to have balance between different abstain classes
(Equation 16). The shallow networks have one convolu-
tional layer with size 256 and 1024 for training on MNIST
and CIFAR-10 datasets respectively. This convolutional
layer is connected to the second (last) layer consisting of
K +M nodes where K is the number of regular classes (10
for both MNIST and CIFAR-10 datasets) and M is the num-
ber of abstain classes. The optimal number of abstain classes
is obtained by changing the number of them from M = 1
to M = 20 on both CIFAR-10 and MNIST datasets. The
optimal value for the network trained on MNIST is M = 3
and M = 4 for CIFAR-10 dataset. Moreover, we com-
pare the optimal multi-abstain shallow network to two other
baselines: One is the network with the number of abstain
classes equal to the number of regular classes (M = K) and
is trained via the regularizer described in (16). The other
baseline is a network with one more layer compared to the
shallow network. Instead of the last layer in the shallow
network, this network has K +M nodes in the layer one to
the last, and K + 1 nodes in the last layer (the same optimal
numbers for M are used for these networks). Ideally the set
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Figure 1. Performance of Multiple-abstain shallow networks on MNIST and CIFAR-10 datasets. We compared multiple abstain neural
networks (both regularized and non-regularized version) with the single abstain networks and networks with one more layer. The above
and below rows demonstrate the trade-off between standard and robust verified accuracy on MNIST and CIFAR-10 datasets.

of models can be supported by such a network is a super-set
of the original shallow network. However, due to the train-
ing procedure (IBP) which is sensitive to higher number of
layers (the higher the number of layers, the looser the lower
and upper bounds), we obtain better results with the original
network with multiple abstain classes.

Next, in Figure 3, we investigate the effect of changing the
number of abstain classes of the shallow network described
above. As we observe, the unregularized networks are much
more sensitive to the change of M than the regularized
version. This means, we can use the regularized network
with the same performance while it does not require to be
tuned for the optimal M . In the unregularized version, by
increasing the number of abstain classes from M = 1 to
M = 5 we see improvement. However, after this threshold,
the network performance drops gradually such that forM =
10 where the number of labels and abstain classes are equal
(M = K = 10) the performance of the network in this case
is even worse than the single-abstain network due to the
model degeneracy of the multi-abstain network. However,
the network trained on the regularized loss maintains the
performance when M changes from the optimal value to
larger values. Moreover, the regularized networks have

superior performance compared to the networks with one
more layer.

Figure 2 demonstrates the performance of no abstain, single
abstain, and multiple abstain networks with and without
regularization on both natural and adversarial images. The
above figure shows the distribution of natural images that
are classified correctly, captured by the abstain classes, or
misclassified. The below chart shows the percentage of
adversarial examples classified correctly, or captured by
each abstain class (M = 10). The results are obtained by
training shallow neural networks on CIFAR-10 dataset. The
hyper-parameter γ is set to 1

K+M = 1
20 in (16).

Beside the shallow networks, the trade-off between standard
and verified robust accuracy is superior on the deep networks
with multiple abstain classes compared to the networks with
the same structure having single or no abstain classes (See
Table 2 in the appendix). The structure of the trained deep
network is exactly as the one described in Sheikholeslami
et al. (2021).

6. Conclusion
We improved the trade-off between standard accuracy
and robust verifiable accuracy by introducing multiple ab-
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Figure 2. Distribution of natural and adversarial images over differ-
ent abstain classes on CIFAR-10 dataset. When there are 10 abstain
classes, model degeneracy leads to lower performance compared
to the baseline. Adding the regularization term (right most col-
umn) will utilize all abstain classes and enhance both standard and
robust verified accuracy. Standard accuracy is the proportion of
correctly classified natural images, while robust verified accuracy
is the proportion of images that are robust against all adversarial
attacks within the ε-neighborhood.

Figure 3. Performance of Multiple-abstain shallow network on
CIFAR-10 datasets. Three different types of networks are evalu-
ated: the networks with multiple abstain classes but without the
regularization term (M), the networks with multiple abstain classes
regularized on with Equation (16) (MR), and the networks with
single abstain class but one more layer OML. The results demon-
strate the less sensitivity of MR networks compared to M networks.
Moreover, the performance of MR networks are better than the
OML networks.

stain classes to the training and verification procedures
of neural networks. We observed that adding multiple
abstain class can result in a “model degeneracy” phe-
nomenon where not all abstain classes are utilized. To
avoid model degeneracy when the number of abstain
classes is large, we propose a regularizer scheme forc-
ing the network to utilize all abstain classes. Our ex-
periments demonstrate the superiority of the trained shal-
low and deep networks over state-of-the-art approaches
on MNIST and CIFAR-10 datasets. Our code is avail-
able at https://anonymous.4open.science/r/
MultipleAbstainDetection-E85E.

https://anonymous.4open.science/r/MultipleAbstainDetection-E85E
https://anonymous.4open.science/r/MultipleAbstainDetection-E85E
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A. Implementation Details
In table A, we demonstrate the structure of the deep networks used in experiments of Table 2. The scheduler used for the
experiments is the one utilized by Sheikholeslami et al. (2021). On both MNIST and CIFAR-10 datasets, we have used an
Adam optimizer with learning rate 5x10e− 4. κ is scheduled by a linear ramp-down process, starting at 1, which after a
warm-up period is ramped down to value κend = 0.5. Value of ε during the training is also simultaneously scheduled by a
linear ramp-up, starting at 0 and εTrain as the final value. The networks are trained with four NVIDIA V100 GPUs.

Network Layers
Conv 64 3×3
Conv 64 3×3

Conv 128 3×3
Conv 128 3×3

Fully Connected 512
Linear 10

Table 1. Standard and Robust Verified error of state-of-the-art approaches on CIFAR-10 dataset.

1. For MNIST, we train on a single Nvidia V100 GPU for 100 epochs with batch sizes of 100. The total number of
training steps is 60K. We decay the learning rate by 10× at steps 15K and 25K. We use warm-up and ramp-up duration
of 2K and 10K steps, respectively. We do not use any data augmentation techniques and use full 28 × 28 images
without any normalization.

2. CIFAR-10, we train for 3200 epochs with batch sizes of 1600. The total number of training steps is 100K. We decay the
learning rate by 10× at steps 60K and 90K. We use warm-up and ramp-up duration of 5K and 50K steps, respectively.
During training, we add random translations and flips, and normalize each image channel (using the channel statistics
from the train set).

B. Bergman-Divergence Method for Optimizing a Convex Function Over a Probability Simplex
In this section, we show how to optimize a convex optimization problem over a probability simplex by using the Bergman
divergence method. Let η be a vector of n elements. We aim to minimize the following constrained optimization problem
where J is a convex function with respect to η:

min
η1,...,ηn

J(η1, . . . , ηn) subject to
n∑
i=1

ηi = 1, ηi ≥ 0 ∀i = 1, . . . , n. (17)

To solve the above problem, we define the Bergman distance function as:

B(x,y) = γ(x)− γ(y)− 〈∇γ(x),x− y〉

where γ is a strictly convex function. For this specific problem where the constrain is over a probability simplex, we choose
γ(x) =

∑n
i=1 xi log(xi). Thus:

B(x,y) =

n∑
i=1

xi log(
xi
yi

)

One can rewrite problem 17 as:

min
η1,...,ηn

J(η1, . . . , ηn) + IP(η) (18)

where P =. Applying proximal gradient descent method on the above problem, we have:
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ηr+1 = argmin
η
IP(η) + 〈∇J(η),η − ηi〉+

1

2ν
B(η,ηi) (19)

= argmin
η

n∑
i=1

∂J(ηr)

∂ηi
(ηi − ηri ) +

1

2ν

( n∑
i=1

ηi log(ηi)−
n∑
i=1

∂γ(ηri )

∂ηi
(ηi − ηri )

)
(20)

By simplifying the above problem, it turns to:

ηr+1 = argmin
η

n∑
i=1

ηi(
∂J(ηr)

∂ηi
− 1

2ν
log(ηri )−

1

2ν
) +

1

2ν

n∑
i=1

ηi log(ηi) (21)

subject to
n∑
i=1

ηi = 1, ηi ≥ 0 ∀i = 1, . . . , n. (22)

Writing the Lagrangian function of the above problem, we have:

ηr+1 = argmin
η

n∑
i=1

ηi(
∂J(ηr)

∂ηi
− 1

2ν
log(ηri )−

1

2ν
) +

1

2ν

n∑
i=1

ηi log(ηi) + λ∗(

n∑
i=1

ηi − 1) (23)

subject to ηi ≥ 0 ∀i = 1, . . . , n.

By taking the derivative with respect to ηi and using the constraint
∑n
i=1 ηi = 1, it can be shown that:

ηr+1
i =

ηri exp(−2ν∇J(η)i)∑n
j=1 η

r
j exp(−2ν∇J(η)j)

(24)

We use the update rule (24) in Algorithm 1 and Algorithm 2 to obtain the optimal η at each iteration.

C. Proof of Theorems
In this section, we prove Theorem 3.1 and Theorem 4.1.

Proof of Theorem 3.1: Starting from Equation 9, we can equivalently formulate it as:

min
z∈Z(x0,ε)

max(cTykz, c
T
a1kz, . . . , c

T
aMkz) = min

z∈Z(x0,ε)
max

{η0,...,ηM}∈P
ck(η)T z. (25)

Note that the maximum element of the left hand side can be obtained by setting its corresponding η coefficient to 1 on the
right hand side. Conversely, any optimal solution to the right hand is exactly equal to the maximum element of the left hand
side. According to the min-max equality (duality), when the minimum and the maximum problems are interchanged, the
following inequality holds:

min
z∈Z(x0,ε)

max
{η0,...,ηM}∈P

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz ≥

max
{η0,...,ηM}∈P

min
z∈Z(x0,ε)

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz. (26)

Moreover, by the definition of upper-bounds and lower-bounds presented in (Gowal et al., 2018), Z(x0, ε) is a subset of
zL ≤ z ≤ z̄L. Thus:
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max
{η0,...,ηM}∈P

min
z∈Z(x0,ε)

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz ≥

max
{η0,...,ηM}∈P

min
zL≤z≤z̄L

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz. (27)

Combining Equality (25) with (26) and (27), we have:

min
z∈Z(x0,ε)

max(cTykz, c
T
a1kz, . . . , c

T
aMkz) ≥ max

{η0,...,ηM}∈P
min

zL≤z≤z̄L
ck(η)T z. (28)

Since zL = WLzL−1 + bL, the right-hand-side of the above inequality can be rewritten as:

min
z∈Z(x0,ε)

max(cTykz, c
T
a1kz, . . . , c

T
aMkz) ≥ max

η∈P
min

zL−1≤z≤z̄L−1

c(η)T (WLz + bL),

which is exactly the claim of Theorem 3.1.

Proof of Theorem 4.1: For the simplicity of the presentation, assume that a0 = y. Partition the set of possible values of zL
in the following sets:

Ẑai = {zL|[zL]ai ≥ [zL]aj ∀j 6= i}

If zL ∈ Ẑai , then:

[zL]ai − [zL]k ≥ [zL]aj − [zL]k ∀j 6= i⇒ [zL]ai − [zL]k

= max
i=0,...,M

{[zL]ai − [zL]k} = max
i∈{0,...,M}

{cTai,kzL}

Thus:

[zL]ai − [zL]k = max
i=0,...,M

{cTai,kzL} ≥ min
zL∈Z(x0,ε)

max
i=0,...,M

{cTai,kzL}

= min
zL−1∈ZL−1(x0,ε)

max
i=0,...,M

{cTai,k(WLzL−1 + bL)}

≥ min
z≤zL−1≤z̄

max
i=0,...,M

{cTai,k(WLzL−1 + bL)}

= min
z≤zL−1≤z̄

max
η∈P

c(η)T (WLzL−1 + bL) (29)

Note that the second inequality holds since the minimum is taken over a larger set in the right hand side of the inequality.
Using the min-max inequality:

min
z≤zL−1≤z̄

max
η∈P

c(η)T (WLzL−1 + bL) ≥ max
η∈P

min
z≤zL−1≤z̄

c(η)T (WLzL−1 + bL) = −Jk(η) (30)

Combining (29) and (30), and multiplying both sides by −1, we obtain:

[zL]k − [zL]ai ≤ Jk(η) (31)

On the other hand:

max
‖δ‖∞≤ε

min
m=0,...,M

`xent\Am

(
zL(x + δ), am

)
≤ max
‖δ‖∞≤ε

`xent\Ai

(
zL(x + δ), ai

)
≤ max

zL−1≤z≤z̄L−1

`xent\Ai(zL) s.t. zL = WLzL−1 + bL. (32)
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Moreover, by the property of the cross-entropy loss, we have:

`xent\Ai(zL) = `xent\Ai(zL − [zL]ai1) (33)

Combining (31), (32) and (33), we have:

max
‖δ‖∞≤ε

min
m=0,...,M

`xent\Am

(
zL(x + δ), am

)
≤ max

zL−1≤zL−1≤z̄L−1

`xent\Ai(zL) s.t. zL = WLzL−1 + bL.

= max
zL−1≤zL−1≤z̄L−1

`xent\Ai(zL − [zL]ai1) s.t. zL = WLzL−1

≤ max
zL−1≤zL−1≤z̄L−1

`xent\Ai(Jk(η), ai)

= max
zL−1≤zL−1≤z̄L−1

`xent\A0
(Jk(η), a0)

Summing up over all data points, the desired result is proven.

D. Details of β-Crown
In this section, we show how β-crown sub-problems can be obtained for neural networks without abstain classes and with
multiple abstain classes respectively. Before proceeding, let us have a few definitions and lemmas.
Lemma D.1. (Zhang et al., 2019, Theorem 15) Given two vectors u and v, the following inequality holds:

v>ReLU(u) ≥ v>Dαu + b′,

where b′ is a constant vector and Dα is a diagonal matrix containing αj’s as free parameters:

Dj,j(α) =


1, if zj ≥ 0

0, if z̄j ≤ 0

αj , if z̄j > 0 > zj and vj ≥ 0
z̄j

z̄j−zj
, if z̄j > 0 > zj and vj < 0,

(34)

Definition D.2. The recursive function Ω(i, j) is defined as follows (Wang et al., 2021):

Ω(i, i) = I, Ω(i, j) = WiDi−1(αi−1)Ω(i− 1, j)

β-crown defines a matrix S for handling splits through the branch-and-bound process. The multiplier(s) β determines the
branching rule.

Si[j][j] =


−1, if split zi[j] ≥ 0

1, if split zi[j] < 0

0, if no split z̄j ,
(35)

Thus, the verification problem of β-crown is formulated as:

min
zinZ

cT
(
WLReLU(zL−1) + bL−1

)
≥ min

zinZ
max
βL−1

cT
(
WLDL−1zL−1 + bL−1

)
+ β>L−1SL−1 (36)

Having these definitions, we can write P,q,a, and d explicitly as functions of α and β. P ∈ Rd0×(
∑L−1
i=1 di) is a block

matrix P :=
[
P>1 P>2 · · · P>L−1

]
, q ∈ R

∑L−1
i=1 di is a vector q :=

[
q>1 · · · q>L−1

]>
. Moreover:
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a = [Ω(L, 1)W1]
> ∈ Rd0×1,

Pi = SiΩ(i, 1)W1 ∈ Rdi×d0 , ∀ 1 ≤ i ≤ L− 1

qi =

i∑
k=1

SiΩ(i, k)bk +

i∑
k=2

SiΩ(i, k)Wkbk−1 ∈ Rdi , ∀ 1 ≤ i ≤ L− 1

d =

L∑
i=1

Ω(L, i)bi +

L∑
i=2

Ω(L, i)Wibi−1

bi =


1, if zj ≥ 0

0, if z̄j ≤ 0

αj , if z̄j > 0 > zj and vj ≥ 0
z̄j

z̄j−zj
, if z̄j > 0 > zj and vj < 0,

Now we extend the definition of g for the network consisting of multiple abstain classes. Let z̄ be the pre-activation value of
vector z before applying ReLU function. We aim to solve the following verification problem:

min
zL−1∈ZL−1(x0,ε)

max
η∈P

ck(η)T (WLzL−1 + bL).

Applying Lemma D.1 to the above problem, we have:

min
zL−1∈ZL−1(x0,ε)

max
η∈P

ck(η)T
(
WLzL−1 + bL

)
≤ min

zL−1∈ZL−1(x0,ε)
max
η∈P

ck(η)T
(
WLDL−1

(
αL−1

)
ẑL−1 + bL

)
Adding the β-crown Lagrangian multiplier to the above problem, it turns to:

min
zL−1∈ZL−1(x0,ε)

max
η∈P

ck(η)T
(
WLDL−1

(
αL−1

)
ẑL−1 + bL

)
≤

min
zL−1∈ZL−1(x0,ε)

max
η∈P,αL−1,βL−1

ck(η)T
(
WLDL−1(αL−1)zL−1 + bL

)
+ β>L−1SL−1zL−1

≤ max
αL−1,βL−1

min
zL−1∈ZL−1(x0,ε)

max
η∈P

(
ck(η)TWLDL−1(αL−1) + β>L−1SL−1

)
ẑL−1

+ ck(η)TbL = max
αL−1,βL−1

min
zL−1∈ZL−1(x0,ε)

max
η∈P

(
ck(η)TWLDL−1(αL−1)

+ β>L−1SL−1

)(
WL−1zL−2 + bL−1

)
+ ck(η)TbL

Replace the definition of A(i) in (Wang et al., 2021, Theorem 3.1) with the following matrix and repeat the proof.

A(i) =

{
ck(η)TWL, if i = L− 1(
A(i+1)Di+1(αi+1) + β>i+1Si+1

)
Wi+1, if 0 ≤ i ≤ L− 2

(37)
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Note that the definition of d will be changed in the following way:

d = ck(η)TbL +

L∑
i=1

Ω(L, i)bi +

L∑
i=2

Ω(L, i)Wibi−1

Moreover, Ω(L, j) = ck(η)TWLDL−1(αL−1)Ω(L− 1, j). The rest of the definitions remain the same.

D.1. Performance of β-crown on networks with multiple detection classes

Figure 4. Performance of β-crown on verification of Neural Networks with single abstain, 4 abstain classes, 10 abstain classes with
regularized, and a network with one more layer (single abstain) on CIFAR-10 dataset.
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Figure 5. Distribution of adversarial and real data described in the example. While one linear classifier cannot separate the adversarial (red
section) and real (green section) data points, two detection classes are capable of detecting adversarial examples.

E. Derivation of equation (12)

In this section, we show how to derive Equation E.

min
zL∈Z(x,ε)

max{cTykzL, cTa1kzL, . . . , c
T
aMkzL}

= min
zL∈Z(x,ε)

max
η∈P

M∑
i=0

ηic
T
aikzL

≥ max
η∈P

min
zL∈Z(x,ε)

M∑
i=0

ηic
T
aikzL

≥ max
η∈P

max
α,β≥0

ηic
T
aikzL

= max
α,β≥0,η∈P

( M∑
i=0

ηigi(x0,α,β) , G(x0,α,β,η)
)

F. A simple example on the benefits and pitfalls of having multiple abstain classes
In this example, we provide a simple toy example illustrating:

1. How adding multiple abstain classes can improve the detection of adversarial examples.

2. How detection with multiple abstain classes may suffer from a “model degeneracy" phenomenon.

Example: Consider a simple one dimensional data distributed where the read data is coming from the Laplacian distribution
with probability density function Pr(X = x) = 1

2 exp(−|x|). Assume that the adversary samples are distributed according
to the probability density function Pa(X = x) = 1

4 (exp(−|x− 10|) + exp(−|x+ 10|). Assume that 1
3 data is real, and 2

3
is coming from adversary. The adversary and the real data is illustrated in Fig 5.

Consider a binary neural network classifier with no hidden layer for detecting adversaries. More specifically, the neural
network has two weight vectors wr and wa, and the bias values br and ba. The network classifies a sample x as "real" if
wrx+ br > wax+ ba; otherwise, it classifies the sample as out-of-distribution/abstain. The misclassification rate of this
classifier is given by:

P (error) =
1

3
Px∼Pr (w

ax+ ba > wrx+ br) +
2

3
Px∼Pa(wax+ ba < wrx+ br)

=
1

3
Px∼Pr (x >

br − ba

wa − wr
) +

2

3
Px∼Pa(x <

br − ba

wa − wr
),
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where due to symmetry and scaling invariant, without loss of generality we assumed that wa − wr > 0. Let t = br−ba
wa−wr .

Therefore,

P (error) =
1

3

∫ +∞

t

1

2
exp(−|x|)dx+

2

3

∫ t

−∞

1

4
(exp(−|x− 10|) + exp(−|x+ 10|)dx (38)

Thus, to find the optimal classifier, we require to determine the optimal tminimizing the above equation. One can numerically
verify that the optimal t is given by t∗ = 5 leading to the minimum misclassification rate of ≈ 0.34. This value is the
optimal misclassification rate that can be achieved by our single abstain class neural network.

Now consider a neural network with two abstain classes. Assume that the weights and biases corresponding to the abstain
classes are wa1 , w

a
2 , b

a
1 , b

a
2 , and the weight and bias for the real class is given by wr and br. A sample x is classified as a real

example if and only if both of the following conditions hold:

wrx+ br > wa1x+ ba1 (39)
wrx+ br > wa2x+ ba2 , (40)

otherwise, it is classified as an adversarial (out of distribution) sample. The misclassification rate of such classifier is given
by:

P (error) =
1

3
Px∼Pc(Conditions (39) hold) +

2

3
Px∼Pa(Conditions (39) do not hold) (41)

Claim 1: The point wa1 = −1, wa2 = 1, ba1 = ba2 = 0, br = 5, wr = 0 is a global minimum of (41) with the optimum
misclassification rate less than 0.1.

Proof: Define t1 = − ba1−br
wa1−wr

, t2 = − ba2−br
wa2−wr

. Considering all possible sign cases, it is not hard to see that at the optimal
point, wa1 − wr and wa2 − wr have different signs. Without loss of generality, assume that wa1 − wr < 0 and wa2 − wr > 0.
Then:

P (error) =
1

3
Px∼Pc(x ≤ t1 ∨ x ≥ t2) +

2

3
Px∼Pa(x ≥ t1 ∧ x ≤ t2) (42)

It is not hard to see that the optimal solution is given by t∗1 = −5, t∗2 = 5. Plugging these values in above equation, we can
check that the optimal loss is less than 0.1. �

Claim 1 shows that by adding an abstain class, the misclassification rate of the classifier goes down from 0.34 to below 0.1.
This simple example illustrates the benefit of having multiple abstain classes. Next, we show that by having multiple abstain
classes, we are prone to the “model degeneracy" phenomenon.

Claim 2: Let w̄a1 = w̄a2 = 1, b̄a1 = b̄a2 = 0, w̄r = 0, b̄r = 5. Then, there exists a point (w̃, b̃) = (w̃a1 , w̃
a
2 , b̃

a
1 , b̃

a
2 , w̃

r, b̃r)
such that (w̃, b̃) is a local minimum of the loss function in (41) and ‖(w̃, b̃)− (w̄, b̄)‖2 ≤ 0.1.

Proof: Let t1 = − ba1−br
wa1−wr

, t2 = − ba2−br
wa2−wr

. Notice that in a neighborhood of point (w̄, b̄), we have wa1 − wr > 0 and
wa2 − wr > 0. Thus, after the loss function in (41) can be written as:

`(t1, t2) =
1

3
Px∼Pc(x ≤ t1 ∨ x ≥ t2) +

2

3
Px∼Pa(x ≥ t1 ∧ x ≤ t2)

=
1

3
Px∼Pr (x ≥ min(t1, t2)) +

2

3
Px∼Pr (x ≤ min(t1, t2))

=
1

3
Px∼Pr (x ≥ z) +

2

3
Px∼Pr (x ≤ z),

where z = mint1,t2 . It suffices to show that the above function has a local minimum close to the point z̄ = 5 (see (Nouiehed
& Razaviyayn, 2021)). Simplifying `(t1, t2) as a function of z, we have:

`(t1, t2) = h(z) =
1

6
exp(−z) +

1

3
− 1

6
exp(−z − 10) +

1

6
exp(z − 10)

By plotting h(z), we can observe that it has a local minimum close to z̄ = 5. �

This claim shows that by optimizing the loss, we may converge to the local optimum (w̃, b̃) where both abstain classes
become essentially the same and we do not utilize the two abstain classes fully.
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ε Method Standard Error (%) Robust Verified Error (%)
Interval Bound Propagation (Gowal et al., 2018) 50.51 68.44

IBP-CROWN (Zhang et al., 2019) 54.02 66.94
εtrain = 8.8/255 (Balunovic & Vechev, 2019) 48.3 72.5

Single Abstain (Sheikholeslami et al., 2021) 55.60 63.63
εtest = 8/255 Multiple Abstain Classes (Current Work) 56.72 61.45

Multiple Abstain Classes (Verified by Beta-crown) 56.72 57.55
Interval Bound Propagation (Gowal et al., 2018) 68.97 78.12

εtrain = 17.8/255 IBP-CROWN (Zhang et al., 2019) 66.06 76.80
Single Abstain (Sheikholeslami et al., 2021) 66.37 67.92

εtrain = 16/255 Multiple Abstain Classes (verified by IBP) 66.25 64.57
Multiple Abstain Classes (Verified by Beta-crown) 66.25 62.81

Table 2. Standard and Robust Verified error of state-of-the-art approaches on CIFAR-10 dataset.

G. Deep neural networks with multiple abstain classes
In Table 2, we compare the performance of several state-of-the-art approaches to networks with multiple abstain classes
where the network is deep as the one described in Sheikholeslami et al. (2021).


