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Abstract
In recent years, a multitude of approaches to cer-
tify the prediction of neural networks have been
proposed. Classically, complete verification tech-
niques struggle with large networks as the combi-
natorial space grows exponentially, implying that
realistic networks are difficult to be verified. For
this reason, we propose to leverage the compu-
tational power of quantum computing for the ro-
bustness verification of neural networks. Further,
we introduce a new Hybrid Quantum-Classical
Robustness Algorithm for Neural network verifi-
cation (HQ-CRAN). By applying Benders decom-
position we split the verification problem into a
quadratic unconstrained binary optimization and
a linear program which we solve with quantum
and classical computers, respectively. Further, we
improve existing hybrid methods based on the
Benders decomposition by reducing the overall
number of iterations and placing a limit on the
maximum number of qubits required. We show
that, in a simulated environment, our certificate
is sound, and provide bounds on the minimum
number of qubits necessary to obtain a reasonable
approximation. Finally, we evaluate our method
on quantum hardware.

1. Introduction
Despite recent breakthroughs of machine learning models,
they have been shown to be brittle to adversarial examples
– an input with added perturbations specifically crafted by
an adversary to fool the network (Szegedy et al., 2014;
Goodfellow et al., 2015). In the example of images, the
difference between an input and its adversarial example is
often undetectable by the human eye while the prediction of
the neural network changes drastically.
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Consequently, research on (adversarial) robustness of ma-
chine learning models has gained importance to ensure safe
usage of machine learning in practice. While empirical
defenses exist (Kurakin et al., 2017; Dhillon et al., 2018),
these approaches do not provide any guarantee and might
be easy to break (Carlini & Wagner, 2017; Athalye et al.,
2018; Goodfellow, 2018).

Formal robustness verification guarantees that a network
and input pair is robust for a certain adversarial budget, i.e.,
there will be no adversarial example whose perturbations
are smaller than the adversarial budget. However, it has
been shown that, even for ReLU networks, the complete ver-
ification problem is NP-complete (Katz et al., 2017). Hence,
the search space of these approaches grows exponentially
with increasing network size resulting in high computational
cost.

The development of quantum computing (QC) hardware
and software has seen significant progress over the recent
years, e.g., recently quantum supremacy has been shown
in an academic sample (Arute et al., 2019). However, prac-
tical applications of QC remain an active area of research
as current quantum computers belong to the category of
Noisy Intermediate Scale Quantum (NISQ) devices. Com-
binatorial optimization has received much attention both in
the area of gate-based QC, via the quantum approximate
optimization algorithm (QAOA) (Farhi et al., 2014), and in
the area of quantum annealing (QA) with the Ising model,
respectively (Das & Chakrabarti, 2005).

We propose to leverage the combinatorial power of QC to
verify the robustness of ReLU networks by proposing a Hy-
brid Quantum-Classical Robustness Algorithm for Neural
network verification (HQ-CRAN) (Franco et al., 2022). We
apply Benders decomposition to partition the MIP into a
quadratic unconstrained binary optimization (QUBO) and
a linear program (LP) (Benders, 1962; Chang et al., 2020).
Thus, the resulting algorithm is an iterative process where
the LP generates cuts for the QUBO which is solved by a
quantum computer or a quantum annealer. As the current
hardware cannot compete with classical solvers, HQ-CRAN
should be understood as a proof of concept. However, as
the availability of increasingly more powerful computers
increases, we may see polynomial speed-ups (Grover, 1996).
For convenience of the reader, we summarize some of the
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main findings of Franco et al. (2022) in the following sec-
tions.

2. Related Work
Robustness Certificates The research field can be divided
into two main categories, namely exact or complete and
incomplete methods. Complete verification methods focus
on reasoning about the adversarial polytope, i.e. the shape
containing all possible outputs given the set of perturbed
inputs. Since these exact verification methods (Bunel et al.,
2020; Tjeng et al., 2018; Katz et al., 2017; Ruan et al., 2018)
do not scale to large networks due to their exponential time
complexity, incomplete methods (Gehr et al., 2018; Wong
& Kolter, 2018; Müller et al., 2021a; Wang et al., 2021; Xu
et al., 2020; Dathathri et al., 2020; Müller et al., 2021b)
adopt convex approximations to overcome the non-linearity
of the network and reduce the overall complexity. The re-
sulting output of these approaches is the worst-case point of
the exact adversarial polytope in case of a complete method,
and of an outer approximation in case of an incomplete one.
Due to the outer approximation, the resulting certificates are
not sharp, i.e. there might be cases where it fails to verify
robustness even though the prediction of the sample could
not be changed given the tested budget.

Hybrid Decomposition Algorithms Recently, a multitude
of quantum optimization algorithms have been proposed
for NISQs. The focus is to solve large combinatorial opti-
mization problems otherwise intractable by classical solvers.
In this context, Gambella & Simonetto (2020) proposed a
decomposition method based on the alternating direction
method of multipliers (ADMM). The method is a heuristic
algorithm which splits a mixed-binary optimization problem
into a QUBO, solved with QC, and a LP via a multi-block
version of ADMM. Similarly, Chang et al. (2020) and Zhao
et al. (2021) used Benders decomposition to divide a MIP
into a QUBO and a LP. To formulate QUBO, both methods
require the real variables to be approximated to binaries,
and then the translation to qubits is one-to-one. In addition
to this, at each iteration a new real variable is constantly
added, leading to an always increasing number of qubits.
In Franco et al. (2022), we improved previous methods by
reducing the overall number of iterations and by placing a
limit to the maximum number of qubits required.

3. Background and Preliminaries
Notation We use lower case Latin and Greek letters
a, b, . . . , α, β, . . . for scalars, bold a for vectors, capitalized
bold A for matrices, and calligraphic A for sets. Further-
more, we use ai to denote the i-th element of a and |·| to
denote the cardinality of a set. diag(v) denotes a diagonal
matrix with all vector entries on the main diagonal and zero

elsewhere. We denote with ⊙ the element-wise product and
with ⊗ the outer product between two vectors. The identity
matrix in Rn×n is In, while On×m is the zero matrix in
Rn×m. The column vector of n ones is denoted by 1n, and
0n is the zero column vector in Rn.

Model Formulation We define a neural network by a func-
tion f(x) : X → R|Z| which maps input samples x ∈ X to
output z ∈ R|Z|, where Z is the set of classes. We assume
a feedforward architecture composed by affine transforma-
tions and followed by ReLU activation functions:

ẑ[i] = W[i]z[i−1] + v[i],

z[i] = max {0, ẑ[i]}, ∀i ∈ {1, . . . , L} ,

where L represents the number of layers, z[0] ≡ x and
f(x) ≡ z[L]. In case of classification, the network outputs a
vector in R|Z|. The predicted class is then given by the index
of the largest value of that vector, i.e. c = argmaxj f(x)j .

Robustness Certificate and Threat Model Let x be an
input, e.g. a vectorized image. We say that a neural network
f is certifiably robust for this input if the prediction for all
perturbed versions remains unchanged:

argmaxj f(x)j = argmaxj f(x̃)j ∀x̃ ∈ Bpϵ (x). (1)

Here, ϵ is the perturbation budget and x̃ is an element from
the perturbation set B∞ϵ (x) based on the infinity norm:

B∞ϵ (x) = {x̃ | ∥x− x̃∥∞ ≤ ϵ}. (2)

If we cannot certify an input, it means that there exists
x′ ∈ B∞ϵ (x) for which argmaxj f(x)j ̸= argmaxj f(x

′)j .
We call any of these x′ an adversarial example.

The piece-wise linear nature of ReLU activation units char-
acterizes the problem as non-convex. There are two ways to
solve this problem. Either we model the ReLU activation
with an integer variable or we enclose the possible activation
values z[i] with a convex area. The former approach yields
complete formulation of the exact polytope but the integer
variables render the problem NP-hard (Tjeng et al., 2018).
The latter approach is an instance of an incomplete solution
(Wong & Kolter, 2018).

Quadratic Unconstrained Binary Optimization (QUBO)
Many problems in finance, economics and machine learning
may be formulated as QUBO problems (G. Kochenberger
et al., 2014):

min
x∈{0,1}n

x⊺Qx+ qx, (3)

where x is vector of binary variables, Q ∈ Rn×n is a square
matrix and q ∈ Rn is a row vector.

In QC, the QUBO formulation gained lots of attention due
to its close resemblance to the Ising model (Lucas, 2014),
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a physical model directly linked to spin states, with main
difference being that states take values in {−1, 1} in Ising
and {0, 1} in QUBO. So, to get from an Ising model to the
corresponding QUBO, one has to transform the states by
s = 2x− 1 and adjust h, and J accordingly:

min
s∈{−1,1}n

−
∑
i

hisi −
∑
ij

Jijsisj . (4)

Quantum Annealing (QA) aims at directly solving such
Ising problems on quantum hardware (Johnson et al., 2011)
with the only restriction being the connectivity of the qubits
on QA. While in simulation and theory we may connect
any qubit to any other qubit, this is not possible on current
hardware. To circumvent this issue, one may represent
one logical unit si by multiple qubits with large coupling
weights Jij in between (Adachi & Henderson, 2015). While
proven to be a suboptimal choice (Marshall et al., 2020) it
remains an open research question to find suitable strategies
of overcoming these limits of current hardware.

Thus, we can obtain solutions for the QUBO problem by
finding the ground state of the Ising model. In QA, we
achieve this by starting from a known initial state which
we slowly evolve towards the ground state of the problem.
For a detailed description we refer the reader to (Das &
Chakrabarti, 2005).

Quantum Approximate Optimization Algorithm
(QAOA) (Farhi et al., 2014) is a hybrid quantum method
for solving Ising problems. The algorithm is considered
as an excellent candidate for NISQ devices due to its
hybrid structure with an iteration between conventional
computers and QC. Its potential in achieving a practical
quantum advantage, however, remains unclear and is
intensively studied (Farhi & Harrow, 2019; Guerreschi
& Matsuura, 2019). In comparison to QA, the use of the
QAOA on gate-based QC may open up the possibility
to consider more complicated Hamiltonians, also going
beyond the QUBO problem. The QAOA transforms the
problem Hamiltonian into a sequence of local Hamiltonians
and evaluates approximate ground states to obtain an
approximate solution of the original optimization problem.

4. HQ-CRAN
In this section, we provide an introduction to HQ-
CRAN (Franco et al., 2022). Given the exponential com-
plexity of a complete verification method, we highlight the
potential of Benders decomposition to exploit NISQ devices
and run part of the problem on QC while generating con-
straints on a classical one. Benders decomposition is an
algorithm for mixed-variables programming that has been
successfully applied to a variety of applications (Benders,
1962). Recently, Chang et al. (2020) and Zhao et al. (2021)

proposed its use on QC. Following their approach, Franco
et al. (2022) present the first application to the verification
problem of neural networks and supplement it with QC-
specific improvements. In a simulation with a sufficient
number of qubits, HQ-CRAN theoretically converges to the
value of the exact solution (Benders, 1962).

A problem with binary variables y is considered, making
Equation 1 to be an instance of the class of MIP problems.
The main components of HQ-CRAN are two programs,
one LP and one QUBO. These are alternatively solved by
classical and quantum computing, correspondingly, until
convergence or another stopping criterion is met. When the
objectives of both programs meet, the optimization stops
and issues a certificate if this value is positive.

Due to the hardware constraints, approximations within
the QUBO program leading to a non exact certificate but
rather a conservative bound have been used. This means that
the certificate is valid and in the ideal, simulated scenario,
HQ-CRAN converges to the exact solution with enough
iterations. However, in settings where the number of it-
erations or qubits is limited, HQ-CRAN is an incomplete
verification method rendering it as a mixture of complete
and incomplete verification.

Overview For a proper certificate, the network’s pre-
diction does not have to change into any other possible
class.However, for simpler notation, we now only consider
the inner minimization problem, i.e. only testing the differ-
ence between the initial predicted class and one other. To
avoid cluttered notation, we write the complete verification
problem in a concise matrix formulation as:

min
z,y
{g⊺z |Az+By ≥ b, Cz ≥ d} . (5)

The matrices and vectors A, B, C, b, and d model the
whole network and the exact construction procedure is
explained in Algorithm 1 of Franco et al. (2022), where
to propagate the boundaries through the network, either
IBP (Tjeng et al., 2018) or CROWN (Zhang et al., 2018)
can been used. The vector z ∈ Rnz considers all network
logits with nz = n0 + · · ·+nL equal to the total number of
neurons, and y ∈ {0, 1}ny with ny equal to the number of
unstable neurons (i.e. a neuron is unstable when its bound-
aries are ℓ

[i]
j < 0 < u

[i]
j ; otherwise we can express it with

a constant being either 0 or 1). The vector g encodes the
difference between the true class and another to be tested
against, e.g. g = (. . . , 0, 1, 0,−1, 0)⊺.

With Benders Decomposition, explained in Appendix A,
Equation 5 is decomposed into two sub-problems: A binary
master problem and a linear programming optimization sub
problem. Similarly to Benders (1962), we rewrite the opti-
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mization of Equation 5 to obtain:

min
y, η

η, (6a)

s.t. α[k] (b−By) + β[k]d ≤ η, ∀(α[k],β[k]) ∈ Λp,
(6b)

α[k] (b−By) + β[k]d ≤ 0, ∀(α[k],β[k]) ∈ Λr,
(6c)

where η ∈ R is a scalar. This problem is known as master
problem on Benders decomposition.

Theorem 4.1 (Franco et al. (2022)). Given a neural network
f , an input x and logits z and following Algorithm 1 of
(Franco et al., 2022) to create constraint matrices A,B,C
as well as vectors b,d,g, the verification of robustness can
be evaluated through the optimization of Equation 6.

The proof of Theorem 4.1 uses the decomposition theorem
of Benders (1962) and is given in Franco et al. (2022).

The difficulty of solving Equation 6 is the exponential size of
the sets Λp,Λr (Chang et al., 2020). Thus, we can gradually
extend the sets Λ′

p ⊆ Λp,Λ
′
r ⊆ Λr by constraints of the sub

problem defined as:

max
α≤ᾱ,β≤β̄

{α (b−By) + βd | αA+ βC = g⊺} . (7)

The sub problem is similar to Equation A.9 except that α
and β are bounded. This bounding idea, introduced by
Chang et al. (2020), can be used to identify whether we
add a cut belonging to the extreme points or rays. If any
of the optimal values of the vectors α or β is equal to the
upper bounds, the constraint belongs to the extreme rays Λ′

r.
Otherwise, it belongs to the extreme points Λ′

p. As the set
of extreme points is bounded, this decision rule is correct
as long as the bounds ᾱ, β̄ are sufficiently large, i.e. larger
than any solution of the extreme points set (Chang et al.,
2020).

Overall procedure Here, we describe in more details the
main functions of Algorithm 1. BUILD(x, ϵ,W ,v) con-
structs the matrices for the optimization problem and is
explained in Algorithm 1 of Franco et al. (2022). Note
that x is the input, ϵ is the adversarial perturbation bud-
get, W and v are the network weights and biases, re-
spectively. SOLVESUBPROBLEM(y[t]) computes the so-
lution of Equation 7 and the result is compared to the
one at the previous iteration. Hence, the minimum be-
tween the two is considered as the new sub objective
s[t]. COMPUTECOREPOINT(y[t]) updates ȳ[t] accord-
ing to the following sum: 1

2 ȳ
[t−1] + 1

2y
[t]. The func-

tion SOLVEMAGNANTI&WONG(ȳ[t]) solves the additional
problem of Franco et al. (2022) with the newly computed
core point ȳ[t] and the resulting solutions α[t],β[t] are added
to Λ′

p. To preserve the size of Λ′
p, if the number of cuts

Algorithm 1 HQ-CRAN (Franco et al., 2022)

input: x, ϵ,W ,v, T, ξ
output: robust, not robust or unknown
initialize: A,B,C,d,b,g← BUILD(x, ϵ,W ,v).
for each adversarial class do

np ← NUMBEROFQUBITSFORP()
for t in {1, . . . , T} do
s[t] ← SOLVESUBPROBLEM(y[t])
ȳ[t] ← COMPUTECOREPOINT(y[t])
Λ′
p ← SOLVEMAGNANTI&WONG(ȳ[t])

nat
← NUMBEROFQUBITSFORA(t)

m[t],y[t] ← QUANTUMOPTIMIZATION(Λ′
p)

if s[t] −m[t] ≤ ξ and VERIFY(y[t]) then
break

end if
end for
if m[t] < 0 then

return unknown
else if s[t] < 0 then

return not robust
end if

end for
return robust

is larger than the maximum value φ, then the oldest cut
α[t−φ],β[t−φ] is removed from Λ′

p. T is the upper bound
on the number of iterations, ξ is the gap between the master
and sub solution and φ is the maximum number of cuts. In
the worst case, if the gap ξ is not met, the algorithm will
run for a maximum number of T iterations. The reader is
referred to Franco et al. (2022) for a more detailed discus-
sion.

5. Results
Architecture, Dataset and Training Methods. We conduct
experiments with one type of multilayer perceptron (MLP)
neural network: MLP-2x[20]. Here MLP-mx[n] refers to
m hidden layers and n units per hidden layer. The network
uses ReLU functions after every fully connected layer. We
train our model on the MNIST dataset for 20 epochs with a
batch size of 128 in two ways: (i) with a regular loss func-
tion and (ii) adversarially trained via the Projected Gradient
Descent (PGD) as in Madry et al. (2017). In case of a regu-
larly trained model, we keep the name MLP-2x[20], while
we refer to it as PGD-2x[20] if it is adversarially trained.
The clean accuracy for the different networks are 95, 62%
and 86, 73% for MLP-2x[20] and PGD-2x[20], respectively.
The adversarial training used adversarial examples from the
infinity norm ball around the input with radius ϵ = 0.01.

Experimental Setup. We divide the hardware into classical
and quantum computing. On the classical side, we ran the
algorithm on a server having 4xCPUs Intel(R) Xeon(R)
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E7-8867 v4 running at 2.40GHz for a total of 72/144
cores/threads and the GPU verifiers on a Nvidia RTX3090.
On the quantum side, we used two different system types:
quantum annealing and gate-based quantum computers. In
the first case, we access the D-Wave AdvantageTM system
5.1 constructed with 5760 qubits in two ways: (i) directly
on the Quantum Processing Unit (QPU) and (ii) with the
Hybrid solver provided by D-Wave Leap1, which makes use
of a Tabu search to further decompose the problem and run
a part on the QPU. In the second case, we used the QAOA2

runtime program of the IBMQ3 cloud on the IBM Brooklyn
QC having the Hummingbird r2 architecture of 65 qubits, a
quantum volume of 32, and 1.5K circuit layers operations
per second.

5.1. Evaluation of Robustness

In this section we compare HQ-CRAN (Franco et al., 2022)
against the complete verifier β-CROWN (Wang et al., 2021)
and two incomplete verifiers PRIMA (Müller et al., 2021b)
and GPUPoly (Müller et al., 2020). We evaluate the
empirical performance of HQ-CRAN in an ideal setting,
i.e., where the master and sub problems are solved using
GUROBI4(Gurobi Optimization, LLC, 2022) software on
a classical computer. For a fair comparison, we propagate
the boundaries through the network with CROWN (Zhang
et al., 2018), also used by β-CROWN, and evaluate all meth-
ods on the first 100 samples from the MNIST test set with
ϵ ∈ { 1

255 ,
2

255 ,
4

255 ,
8

255 ,
16
255} as adversarial budget. We

implement HQ-CRAN without the QUBO formulation for
QC, i.e., without relaxing the constraints with additional
variables and adding them to the objective by quadratically
penalizing them.

In terms of final robustness certification, we report in Ta-
ble 1 the certified accuracy, i.e., the fraction of verified and
correctly classified samples of all test samples. To limit
the compute time, we set the maximum number of itera-
tions T to 1000 and the target gap ξ between the master
and sub problem to 0.1. Within these settings, HQ-CRAN
behaves similarly to β-CROWN in terms of certified accu-
racy, and shows better results for ϵ values greater than 8/255
with respect to PRIMA and GPUPoly. Compared to the
complete approach and HQ-CRAN, the certified accuracy
for incomplete methods drops significantly for ϵ = 16/255,
indicating that outer approximations struggle to verify larger
perturbations.

On the contrary, our average runtime is ∼ 2 orders of mag-
nitude slower than incomplete methods and ∼ 1 order than

1D-Wave LeapTM Quantum Cloud Service
https://cloud.dwavesys.com/leap/

2Python library Qiskit v0.36.0 https://github.com/Qiskit/qiskit
3IBM Quantum https://quantum-computing.ibm.com/
4GUROBI python version 9.1.2

β-CROWN, as shown in Figure 1. As these results are eval-
uated on a classical computer and current NISQ devices are
not yet able to handle larger problems, it is apparent that we
do not gain any speed-up and our work shall be considered
as a proof-of-concept.
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Figure 1: Certified accuracy and average runtime of MLP2x[20]
for β-CROWN, GPUPoly, PRIMA and HQ-CRAN on the first 100
samples from the MNIST test set with an increasing perturbation
budjet ϵ. In the context of HQ-CRAN the bounds for the sub
problem and the maximum number of iterations T have been set to
10 and 1000, respectively. The gap η has been set to 0.1.

5.2. Simulations in Classical Computing

To provide more insights on HQ-CRAN, we further conduct
evaluations on the objective and runtime per iteration of
the master and sub problems, as shown in Figure 2. Both
problems are solved using GUROBI (Gurobi Optimization,
LLC, 2022). In this scenario, we test the robustness of a
sample against three adversarial classes, named from 0 to
2. The sub objective starts from a large positive value and
decreases with each iteration. Meanwhile the master objec-
tive starts from −∞ and increases until it reaches zero or
becomes positive. In the latter case, the algorithm goes on to
test the next class. In contrast, if the sub objective becomes
negative the algorithm stops and declares the sample not
robust.

The average time of the master solver increases with each
iteration, while the average time of the sub solver remains
constant. This behavior must be attributed to the continuous
growth of the constraints of the master problem generated by
the sub. Since the execution of the master affects the overall
time, solving it with quantum optimization may drastically
reduce the execution time in the future.

In the end, one may obtain an polynomial speed-up (Grover,
1996), though, still in exponential time as it is assumed that
QC may not solve NP-hard problems with high probability
in P time (Mohr, 2014). An analogy of this can be observed
in Figure 2, as in the worst case, one has to add all possi-
ble cuts from the exponentially large set of extreme rays.
Luckily, in practice, few iterations already lead to sufficient
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Table 1: Adversarial robustness of MNIST classifiers to perturbations of ϵ in a l∞-norm. We run each algorithm on the first 100 test set
samples from the MNIST dataset. The times are expressed in seconds.

NETWORK ϵ CERTIFIED ACCURACY ↑ AVERAGE TIME [S]↓
β-CROWN HQ-CRAN PRIMA GPUPOLY β-CROWN HQ-CRAN PRIMA GPUPOLY

PGD-2X[20] 2/255 88% 88% 88% 88% 0.017 0.029 0.073 0.002
4/255 88% 88% 88% 88% 0.017 0.157 0.075 0.005
8/255 81% 81% 81% 81% 0.181 1.474 0.115 0.008
16/255 52% 52% 32% 27% 1.820 6.331 0.369 0.013

MLP-2X[20] 2/255 97% 97% 97% 97% 0.078 0.099 0.022 0.004
4/255 96% 96% 96% 96% 0.063 0.533 0.028 0.004
8/255 78% 78% 76% 60% 0.384 3.791 0.244 0.006
16/255 26% 26% 8% 3% 2.140 18.487 0.544 0.022
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Figure 2: Objectives and average time per iteration for the master
and sub solvers on one sample of MNIST test set for MLP2x[20]
with an ϵ of 16

255
. The robustness is conducted against three adver-

sarial classes, named from 0 to 2.

results.

5.3. Quantum Hardware Experiments

Finally, we evaluate HQ-CRAN running on a gate-based
quantum computer via QAOA and on a quantum annealer
via Leap. Due to time limits on current quantum hardware,
we present results on the first and the first ten MNIST test
set samples for QAOA and Leap, respectively. This also re-
stricts our hyperpameter choices for QAOA to the Perturba-
tion Stochastic Approximation optimizer with a maximum
iteration number of 10 instead of 100, 2 repetitions and 1024
shots. For Leap we use the default 3-minute execution time
limit. The penalty weights wa and wp were set to 0.1 and
0.01, respectively. ϵ = 1

255 and a target gap ξ of 1 for both
algorithms. With this setting, QAOA starts of with ∼ 28
qubits and requires 13 additional qubits per step. For Leap,
the number of theoretical qubits is identical but one needs to
add qubits required for increased connectivity as discussed
previously.

Figure 3 shows the convergence behavior of Leap and
QAOA. The gap is defined as difference between the ob-
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Iterations
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50

100

G
ap
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Figure 3: Average and standard deviation of the difference between
master and sub objective at each iteration for QAOA and Leap. In
the case of Leap, we plot the first 10 samples of the MNIST test
set. In contrast, for QAOA, we only show the first one. We used
an ϵ value of 1/255 and PGD-2x[20].

jectives of master and sub problems at each iteration. The
solution is reached when the gap is lower than our target
gap ξ = 1. While we find QAOA not converging by the
constrained accessibility and limitations of current QC hard-
ware, Leap converges close to the optimal solution within 6
steps for all tested samples.

6. Conclusion
We proposed a proof of concept for a hybrid quantum al-
gorithm for robustness verification leveraging the computa-
tional power of NISQ devices. We have shown that by ap-
plying Benders decomposition to the MIP related to ReLU
network certification one obtains a classically solved LP
and a QC suitable sub problem. Further, we perform eval-
uations of HQ-CRAN in comparison with state-of-the-art
GPU-based verifiers. On the one hand, results show that
HQ-CRAN performs similarly to complete verifiers and
outperforms incomplete ones in terms of certified accuracy.
On the other hand, HQ-CRAN is two orders of magnitude
slower than incomplete methods on classical hardware. Fi-
nally, we evaluate the method on quantum hardware and
show that the runtime can benefit from speedup when more
powerful quantum hardware will become available. In con-
clusion, this work paves the way towards exploiting the
combinatorial power of QC to accelerate robustness verifi-
cation of neural networks in the future.
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For the sake of readability, we report here an excerpt from Franco et al. (2022).

A. Benders Decomposition
Let us rewrite Equation 5 as miny q(y) where:

q(y) = min
z
{g⊺z |Az+By ≥ b, Cz ≥ d} . (A.8)

Here we view the vector of binary variables y as given. Hence, we decoupled y from the rest of the program resulting in a
LP. The dual formulation of q(y) is given as:

max
α,β

{α (b−By) + βd | αA+ βC = g⊺} , (A.9)

where α ∈ Rmb
+ and β ∈ Rmd

+ are row vectors. Since y is constant within the optimization of Equation A.8, the optimization
program is a linear program and we thus have strong duality5 The optimal objective value of Equation A.9 is infinity if
Equation A.8 is infeasible. If Equation A.8 is feasible it has to have the same finite value. Thus, it should be either finite or
positive infinity. Therefore, for an optimal value of the dual formulation of Equation A.9, g⊺ −αA− β⊺C has to be zero.
Hence, we know the optimal feasible objective will only be the result of the remaining terms that are not interacting with z
as all of them need to cancel out. Following Benders decomposition, we can formulate the objective of Equation A.9 as a
linear combination of extreme rays and points of the feasible region. We denote as Λr and Λp the set of extreme rays and
extreme points of the set {(α,β) | αA+ βC = g⊺,α ≥ 0,β ≥ 0}.
Similarly to Benders (1962), we rewrite the optimization of Equation 5 to obtain:

min
y, η

η, (A.10a)

s.t. α[k] (b−By) + β[k]d ≤ η, ∀(α[k],β[k]) ∈ Λp, (A.10b)

α[k] (b−By) + β[k]d ≤ 0, ∀(α[k],β[k]) ∈ Λr, (A.10c)

where η ∈ R is a scalar. This problem is known as master problem on Benders decomposition.

5i.e. the optimal objective value of the primal equals the optimal value of the dual.


