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ABSTRACT

As machine learning systems are increasingly employed in high-stakes tasks, al-
gorithmic fairness has become an essential requirement for deep learning models.
In this paper, we study how to transfer fairness under distribution shifts, a crucial
issue in real-world applications. We first derive a sufficient condition for trans-
ferring group fairness. Guided by it, we propose a practical algorithm with a fair
consistency regularization as the key component. Experiments on synthetic and
real datasets demonstrate that our approach can effectively transfer fairness as
well as accuracy under distribution shifts, especially under domain shift which is
a more challenging but practical scenario.

1 INTRODUCTION

The social impact of machine learning has increased as it is widely used to aid our decision-making
in real-world applications, such as hiring, loan approval, facial recognition and criminal justice. To
avoid the discrimination on a subset of population (e.g. with respect to race, gender), many efforts on
algorithmic fairness have been carried out (Chouldechova, 2016; Friedler et al., 2016; Zafar et al.,
2017; Mehrabi et al., 2019; Rajkomar et al., 2018; Corbett-Davies & Goel, 2018; Caton & Haas,
2020). Although existing works have achieved remarkable success in ensuring fairness, most of
them assume the distribution of data is identical to that in training stage, which hinders their use in
practice since distribution shifts always happen in reality. Recent studies show that the fairness of a
model is likely to collapse when encountering a distribution shift. For example, Ding et al. (2021)
observe that a fair income predictor trained with data from one state might not be fair when used in
other states. Schrouff et al. (2022) try to maintain fairness in healthcare settings, but a model that
performs fairly according to the metric in “hospital A” shows unfairness when deployed in “hospital
B”. Such observations motivate us to investigate how to transfer fairness under distribution shifts.
Specifically, when there is a fair model in a source domain, we investigate how to adapt it to a target
domain with the goal of achieving both accuracy and fairness in both domains.

Intuitively, the fairness of a model in target domain strongly depends on the nature of distribution
shifts. We follow the taxonomy in Koh et al. (2021) which categorize distribution shifts into two
types: domain shift where source and target distributions comprise data from related but distinct
domains (e.g. deploy a system to a new environment), and subpopulation shift where two domains
overlap, but relative proportions of subpopulations differ (e.g. the increase of female candidates).
We develop a synthetic dataset benchmark to simulate possible distribution shifts and find that do-
main shift is more challenging than subpopulation shift when transferring fairness. While recent
work explores many methods to transfer fairness (Singh et al., 2021; Rezaei et al., 2020; Giguere
et al., 2022), the most considered settings fall into subpopulation shifts. This encourages us to focus
on domain shifts and hybrid shifts which are more difficult but practical settings.

Recent progress of self-training (Wei et al., 2021; Cai et al., 2021; Zhang et al., 2021b; Berthelot
et al., 2021; Sagawa et al., 2021; Sohn et al., 2020) shows that input consistency regularization en-
ables label propagation and has become a powerful approach for transferring accuracy. By taking
demography into consideration, we first extend self-training assumption to intra-group expansion
(as in Figure 1) and then derive a sufficient condition for transferring fairness under such assump-
tion. The key insight is to have a fair teacher classifier and ensure the model gains the same input
consistency on different groups in order to avoid biased label propagation. Guided by our theoretical
analysis, we propose a practical algorithm which combines LAFTR (Madras et al., 2018), an adver-
sarial learning method for fairness, and FixMatch (Sohn et al., 2020), a self-training framework. To
balance the consistency, we also improves FixMatch with a novel fair consistency regularization.
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Figure 1: Illustration of intra-group expansion assumption in the input space. Here, we consider
a gender classification task where the sensitive attribute is the race. Source images are sampled
from UTKFace dataset (Zhang et al., 2017) and target images are sampled from FairFace dataset
(Kärkkäinen & Joo, 2019). Images in two domains carry different capture-bias (e.g. different angles,
diversity of facial expressions) but lie on the same population distribution. Intra-group expansion
assumes that different groups in the same class are separated by the sensitive attribute while every
group is self-connected with certain transformations. Under such assumptions, we propose to obtain
fairness and accuracy in both domains by training with a fair teacher classifier and a group-balanced
input consistency.

We evaluate our method under different types of distribution shifts with a synthetic dataset and also
test it on real datasets. Experiments show that our approach performs high accuracy and fairness in
target domain without sacrificing the performance in source domain. To the best of our knowledge,
this is the first work using self-training to transfer fairness under distribution shifts.

2 TRANSFER FAIRNESS VIA FAIR CONSISTENCY REGULARIZATION

2.1 PROBLEM SETTING

We consider a classification problem in this paper. Let X,A, Y denote random variables and
X ,A,Y denote corresponding spaces of input features, sensitive attribute (e.g. male and fe-
male) and label. For simplicity, we assume binary sensitive attribute and binary classification,
A = {0, 1},Y = {0, 1}. We aim to learn a model g : X → Y (or g : X × A → Y) and
are interested in the fairness of it when a distribution shift happens. Specifically, with S and T
denoting source and target distributions, we consider the case that PS(X,A, Y ) ̸= PT (X,A, Y )
but two domains share the same ground truth classifier g∗. Suppose we have m labeled examples
{(x(i)

S , a
(i)
S , y

(i)
S )}mi=1 in source domain and m′ unlabeled examples {(x(i)

T , a
(i)
T )}m′

i=1 in target do-
main. With labeled data, we can find a fair and accurate model in source domain denoted as gtc.
We study how to adapt this teacher classifier gtc to target domain with high accuracy and fairness
without sacrificing the performance in source domain.

We use equalized odds Hardt et al. (2016) as the fairness metric in our theoretical analysis which
requires the true positive rate (TPR) and the true negative rate (TNR) to be the same among groups.
Thus, the unfairness is defined as

∆odds =
1

2
|P(Ŷ = 1|A = 0, Y = 1)− P(Ŷ = 1|A = 1, Y = 1)|+

1

2
|P(Ŷ = 0|A = 0, Y = 0)− P(Ŷ = 0|A = 1, Y = 0)|.

where Ŷ = g(X) is the prediction by our model. Since this unfairness metric separates the data into
groups based on values for both A and Y , we will use “group” to indicate such separation instead of
conventional understanding that only considers A. In next section, we aim to bound the unfairness
and error in both domains.
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2.2 THEORETICAL ANALYSIS

Under the assumption that two domains share one underlying population distribution which has good
continuity within each class or sub-class, Wei et al. (2021) and Cai et al. (2021) prove that self-
training with input consistency regularization can propagate labels from source domain to target
domain so that to transfer accuracy. Taking the demography and fairness into consideration, we
extend the expansion assumption to intra-group expansion (as shown in Figure 1) which is more
realistic. Under this assumption, we then upper bound the unfairness and error for a self-training
method.

First of all, let’s characterize the data distribution as follows. We assume that the source data and
target data are from the same underlying population distribution where classes are separated and
different groups in the same class are separated as well (i.e. separate by sensitive attribute).
Assumption 1. Let Si

a and T i
a denote the support set of {X|A = a, Y = i} in source and target

domains. We assume supp(S) = ∪i ∪a Si
a and supp(T ) = ∪i ∪a T i

a, where (1) Si
a ∩ Si

a′ =

T i
a ∩ T i

a′ = Si
a ∩ T i

a′ = ∅,∀i, a ̸= a′, and (2) Si
a ∩ Sj

a′ = T i
a ∩ T j

a′ = Si
a ∩ T j

a′ = ∅,∀a, a′, i ̸= j.

This is a realistic assumption as illustrated in Figure 1. In the following analysis, we abuse the
notation to let Si

a, T i
a also denote the conditional distribution (probability measure) of S, T on the

set Si
a, T

i
a respectively and define U i

a = 1
2 (S

i
a + T i

a) as the group population distribution. We use
U to denote the population distribution of the entire data. Next, we define the neighborhood and
intra-group expansion based on it.
Definition 2.1. Let T denote a set of input transformations (e.g. via data augmentations) and define
the transformation set of x as B(x) ≜ {x′|∃T ∈ T , s.t. ∥x′ − T (x)∥ ≤ r}. For any x ∈ Si

a ∪ T i
a,

we define the neighbor of x as N (x) := (Si
a∪T i

a)∩{x′|B(x)∩B(x′) ̸= ∅} and define the neighbor
of a set V ∈ X as N (V ) := ∪x∈V ∩(∪i∪aSi

a∪T i
a)
N (x).

Assumption 2 (Intra-group expansion). We say that U i
a satisfies (α, c)-multiplicative expansion for

some constant α ∈ (0, 1) and c > 1, if for all V ⊂ U i
a with PUi

a
(V ) ≤ α, we have PUi

a
(N (A)) ≥

min{cPUi
a
(A), 1}.

Because of the Assumption 1 on data distribution, we define the neighbor and expansion assumption
within the group. Definition 2.1 can be understood as two examples are neighbors if they are near
each other after applying some transformations and the neighbor of a set is the union of neighbors of
its elements. As shown in Figure 1, intra-group expansion states that for every sufficiently small set
of points in a group, the group conditional probability mass of its neighbor is sufficiently large. We
can also interpret it as the manifold of this group has sufficient connectivity. This assumption allows
us to propagate labels within the group from one domain to another by encouraging the consistency
under transformations. In the following, we investigate how to use this nice property to transfer
fairness and accuracy with self-training.

Let’s use RUi
a
(g) ≜ PUi

a
[∃x′ ∈ B(x), s.t. g(x) ̸= g(x′)] to denote the consistency loss of classifier

g on distribution U i
a which is the fraction of examples where g is not robust to input transformations.

We use 0-1 loss to evaluate the error of g as εUi
a
(g) ≜ PUi

a
[g(x) ̸= g∗(x′)], and the disagreement

between g and a teacher classifier gtc as LUi
a
(g, gtc) ≜ PUi

a
[g(x) ̸= gtc(x

′)]. The following theorem
states a sufficient condition for transferring fairness as well as accuracy (see proof inAppendix B).
Theorem 2.1. If we have a teacher classifier gtc with bounded unfairness such that |εUi

a
(gtc) −

εUi′
a′
(gtc)| ≤ γ,∀a, a′ ∈ A and i, i′ ∈ Y . We assume that U i

a satisfies (ᾱ, c̄)-multiplicative expan-

sion and εUi
a
(gtc) ≤ ᾱ < 1/3 and c̄ > 3,∀a, i. We define c ≜ min{1/ᾱ, c̄}. Set µ ≤ εUi

a
(gtc),∀a, i.

If we train our classifier using the following algorithm

min
g∈G

max
a,i

RUi
a
(g) (1)

s.t. LUi
a
(g, gtc) ≤ µ ∀a, i (2)

and denote the optimal solution as ĝ. Then the error and unfairness of ĝ on the population distribu-
tion U are bounded as

ε(ĝ) ≤ 2

c− 1
ε(gtc) +

2c

c− 1
RU (ĝ) (3)
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Figure 2: Training diagram.

∆odds ≤
2

c− 1
(γ + µ+ cmax

a,i
RUi

a
(ĝ)) (4)

Intuitively, this sufficient condition suggests us to fit a fair teacher classifier and minimize a balanced
consistency among groups in order to guarantee a low unfairness and error in both domains. One
challenge of applying this algorithm in practice is the fair teacher classifier. We can get a fair teacher
classifier in source domain with labeled data, but it might not be fair on population distribution.
Interestingly, the iterative self-training paradigm is able to update the teacher classifier and thus
making it fairer and fairer. Another challenge is how to balance the consistency. Existing self-
training approaches do not take fairness into consideration and may have a biased consistency. In
the next section, we propose a fair consistency regularization to tackle it.

2.3 PRACTICAL ALGORITHM

Guided by theorem 2.1, we propose a practical algorithm (as shown in Figure 2) by combining
LAFTR (Madras et al., 2018), an adversarial learning method for fairness, and FixMatch (Sohn et al.,
2020), a self-training framework. LAFTR is one of the famous in-processing fairness methods, it
enforces the accuracy and fairness with a supervised classification loss LS

cls and an adversarial loss
LS
fair that bounds the equalized odds. With labeled data, we can train a fair model in source domain

using LAFTR. To transfer fairness and accuracy, we combine it with FixMatch Sohn et al. (2020),
a self-training framework. We train a student model to fit the teacher classifier and, at the same
time, to minimize the consistency loss Lconsis with unlabeled data from two domains. Since we
need a teacher classifier that is fair on population distribution instead of only source distribution,
we iteratively update the teacher classifier by using the student model from the previous epoch as
the new teacher classifier. Overall, the loss function in our algorithm is the weighted summation of
three terms: L = LS

cls + αLS
fair + βLconsis.

Guided by the objective in theorem 2.1, we need to minimize and balance the consistency loss
evaluated on every group. However, FixMatch (Sohn et al., 2020) does not take fairness into con-
sideration which is shown to have bias in our experiments. Therefore, we propose a fair consistency
regularization with the following loss function.

Lconsis(g) =
∑
i

∑
a

λi
aL

i
a(g) (5)

where Li
a(g) =

1∑
xi

a

∑
xi

a

1(max(gtc(x
i
a)) ≥ τ)H(argmax(gtc(x

i
a)), g(T (x

i
a))) (6)

where xi
a denotes an input with sensitive attribute A = a and class Y = i, τ is a fixed confidence

threshold, H denotes the cross entropy function and λi
a is the coefficient of the consistency loss

of corresponding group. Here, we abuse the usage of g(x) to denote the output logits of model g
on input x and thus, argmax(gtc(x

i
a)) is the pseudolabel generated by teacher classifier. T (xi

a)
is the transformed input as defined in definition 2.1. Minimizing this loss function will lead to
a model consistent to certain transformations which is similar to FixMatch. What differs is that
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we also need to balance the consistency loss, so we evaluate it per group. The challenge is that
we do not know which group one example belongs to since we do not access to labels in target
domain. To tackle it, we propose to use pseudolabels for target data. The error is acceptable since
only high confident examples are considered by the consistency loss. Then, the simplest way to
achieve balanced consistency loss is to set λi

a = 1/#groups. However, this setting overlooks the
approximation error of consistency loss. By theorem 2.1, our goal is to minimize and balance
the consistency loss on population distribution and we approximate it with function 6. Intuitively,
if a group has less confident examples, the approximation error of consistency loss is larger. To
penalize such cases, we should increase the coefficient of its empirical consistency loss. Therefore,
we propose to set λi

a as

λ̂i
a =

1∑
xi

a
1(max(gtc(xi

a)) ≥ τ)
(7)

and λi
a = λ̂i

a/
∑

λ̂i
a. Note that since the teacher classifier evolves while training, this is a dynamic

coefficient. With such consistency regularization, the model will dynamically pay more attention
to groups it is not confident about which enables us to minimize and balance the consistency at the
same time. To allow mini-batch training, we use the number of pseudolabels from the last epoch to
calculate the weights of consistency loss with Equitation 7 in every epoch. Although we use LAFTR
and FixMatch in this paper, it is also possible to use other in-processing fairness methods such as
CFair (Zhao et al., 2019a) and consistency training methods such as UDA (Xie et al., 2019) with the
balanced loss. We leave this to future work.

3 EXPERIMENTS

We first evaluate our method and benchmark methods under different settings of distribution shift
with a synthetic dataset and then conduct experiments on real datasets.

3.1 EVALUATE FAIRNESS UNDER DIFFERENT TYPES OF DISTRIBUTION SHIFT

To study the fairness under distribution shifts, we adjust 3D Shapes dataset (Kim & Mnih, 2018),
which contains images of 3D objects generated from few independent latent factors, to a synthetic
dataset. By sampling according to specific distributions of latent factors, we can simulate different
types of distribution shifts (see Appendix C.1 for details). We treat the image as input X , the
object color as sensitive attribute A, the object shape as class Y and the scale of object as domain
D. Our goal is to train a fair shape classifier under distribution shifts. We simulate four types
of distribution shifts and compare accuracy and fairness in source and target domains. We use 2-
layer MLP as the encoder and 2-layer MLP as the adversary. We compare our model with four
baselines: (1) Base (standard ERM), (2) LAFTR, (3) LAFTR+DANN (a combination of LAFTR
and a domain adaptation method (Ganin et al., 2016)), (4) LAFTR+FixMatch. We use random
padding and cropping as transformations in consistency loss for (4) and our approach.

Domain shift is more challenging than subpopulation shift. Figure 3 shows that under subpop-
ulation shifts, LAFTR can already achieve high accuracy and fairness in target domain although it is
trained to be fair in source domain. We suspect that it is because source and target domains share the
same support set, so the change of proportions of subpopulations (defined by scale in Figure 3(a),
and by shape and color in Figure 3(b)) will not affect fairness much if the model is already accu-
rate on every group. However, under domain shifts, the model trained to be accurate and fair in
source domain (with small object scales) with LAFTR performs poorly in target domain (with large
object scales) in both aspects of accuracy and fairness. This observation suggest that domain shift
is a more challenging problem. By using unlabeled target data with domain adaptation methods,
LAFTR+DANN performs poorly in transferring fairness or accuracy and LAFTR+FixMatch can
transfer accuracy but might be unfair in target domain which is consistent with the finding in Zhu
et al. (2022). Comparing with them, our method with fair consistency regularization achieves high
accuracy and fairness in target domain and also improves the performance in source domain.
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(a) Subpopulation shift, PS(Y,A) =
PT (Y,A), PS(D) ̸= PT (D)

(b) Subpopulation shift, PS(Y,A) ̸=
PT (Y,A), PS(D) = PT (D)

(c) Domain shift, PS(Y,A) = PT (Y,A),
PS(D) ̸= PT (D)

(d) Domain shift, PS(Y,A) ̸= PT (Y,A),
PS(D) ̸= PT (D)

Figure 3: Accuracy and unfairness in two domains under different types of distribution shift. (S)
denotes the source domain and (T) denotes the target domain, we run experiments under every
setting for 5 times and visualize the standard deviation as the bar.

3.2 EVALUATION ON REAL DATASET

In this section, we evaluate our method on two face datasets. We use UTKFace dataset (Zhang
et al., 2017) as source domain and FairFace dataset (Kärkkäinen & Joo, 2019) as target domain.
There is a distribution shift between two domains since the images in two datasets are collected
from different sources. We consider a gender classification task where the sensitive attribute is
race (white and non-white). We use VGG16 (Simonyan & Zisserman, 2014) as the model and
compare with four baselines. We use horizontal flipping and random cropping as transformations in
consistency loss. Besides equalized odds, we evaluate the unfairness with two additional metrics.
The accuracy disparity ∆acc = |P(Ŷ = Y |A = 0)− P(Ŷ = Y |A = 1)|, and the variance of group
accuracy Vacc = V ar({P(Ŷ = i|A = a, Y = i),∀a, i}). Results are shown in Table 1. Comparing
with LAFTR and LAFTR+DANN, LAFTR+FixMatch effectively improves the accuracy in target
domain while suffers from high unfairness. As expected, our method can reduce the unfairness via
balanced consistency regularization.

Table 1: Transfer fairness and accuracy from UTKFace to FairFace with VGG16

Source Target
Method Acc Vacc ∆acc ∆odds Acc Vacc ∆acc ∆odds

Base 90.79 1.73 2.53 4.88 74.22 7.01 4.57 6.62
LAFTR 91.00 1.46 1.68 3.45 73.74 4.1 4.73 8.10
LAFTR+DANN 90.57 1.63 2.43 4.53 73.37 6.46 4.44 9.91
LAFTR+FixMatch 92.31 0.98 1.58 3.20 76.36 18.71 5.79 5.22
Ours 92.80 1.51 2.58 5.21 77.07 4.71 2.42 6.36
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4 CONCLUSION

In this paper, we study the problem of transferring fairness under distribution shift. We derive a
sufficient condition for it based on a intra-group expansion assumption and propose a theory guided
algorithm with self-training. To further ensure a fair consistency regularization, we propose a simple
but effective reweighted consistency loss with dynamic weights calculated from pseudolables. We
also introduce a synthetic dataset to study this problem with a easy realization of different types of
distribution shift. One limitation of our approach and other self-training approaches is that the per-
formance strongly depends on a well defined transformation set. In future work, we will explore the
impact of transformations on our algorithm and apply our method to other real-world applications.
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A RELATED WORK

Fair machine learning Generally, fair machine learning methods fall into three categories: pre-
processing, in-processing and post-processing (Mehrabi et al., 2019; Caton & Haas, 2020). In this
paper, we focus on in-processing methods which modify learning algorithms to remove discrimina-
tion during the training process. As for fair classification, seminal approaches have been proposed
including fair representation learning (Zemel et al., 2013; Louizos et al., 2016; Beutel et al., 2017;
Zhang et al., 2018; Madras et al., 2018; Song et al., 2019; Creager et al., 2019; Zhao et al., 2020),
fairness-constrained optimization (Donini et al., 2018; Agarwal et al., 2018), causal methods (Kus-
ner et al., 2017; Glymour & Herington, 2019; Oneto & Chiappa, 2020), and many other approaches
with different techniques (Celis et al., 2019; Chuang & Mroueh, 2021; Goel et al., 2021). All of
those work are for in-distribution fairness and we investigate out-of-distribution fairness in this pa-
per. We use LAFTR (Madras et al., 2018), an adversarial learning method which shows advanced
performance on fairness (Reddy et al., 2021), to learn a fair model in a source domain and adapt it
to a target domain. Many metrics of fairness have been proposed (Corbett-Davies & Goel, 2018) in-
cluding demographic parity (Calders et al., 2009), equalized opportunity, and equalized odds (Hardt
et al., 2016) which are most widely adopted.

Domain adaptation and self-training Inspired by seminal theoretical work (Ben-David et al.,
2010), numerous distribution matching approaches have emerged for domain adaption over the past
decade. Domain-adversarial training (Ganin et al., 2016) and many of its variants (Tzeng et al.,
2017; Long et al., 2018; Hoffman et al., 2018; Tachet des Combes et al., 2020) that aim at match-
ing the distribution of two domains in the feature space have shown encouraging results in many
applications. However, recent studies (Wu et al., 2019; Zhao et al., 2019b; Li et al., 2020) show
that such methods may fail in many cases since they only optimize part of the theoretical bound.
In our experiment, we also test DANN (Ganin et al., 2016) as a baseline. Recently, another line
of work for domain adaptation arises which uses self-training similar to semi-supervised learning
(Zhang et al., 2021b; Berthelot et al., 2021). Those methods enjoy guarantees (Wei et al., 2021; Cai
et al., 2021), demonstrate superior empirical results and desirable properties such as robustness to
spurious features (Kumar et al., 2020; Chen et al., 2020; Liu et al., 2021). However, all of those
works on domain adaptation only aim at high target accuracy. Although there are works that study
fairness issues in current domain adaptation methods (Lan & Huan, 2017) and propose to alleviate it
by balancing the data (Jing et al., 2021; Wang et al., 2021; Zhu et al., 2022), fair domain adaptation
is still under-explored. Based on the findings that model’s consistency to input transformations is
important to generalization (Zhu et al., 2021) and is a core component of self-training (Shu et al.,
2018; Sohn et al., 2020; Grill et al., 2020), we improve the consistency regularization in Sohn et al.
(2020) to achieve fair transfer.

Transfer fairness Out-of-distribution fairness has been an under-explored area. Prior works can
be categorized into: 1) Group-wise distribution matching. Schumann et al. (2019) derive an upper
bound for fairness in target domain which suggests to train a fair model in source domain and match
the distributions of relevant groups from two domains in feature space at the same time. Yoon et al.
(2020) also do group-wise distribution matching but with Wasserstein distance. Such methods are
hard to achieve if we do not have supervisions in target domain and it also shares the drawback of
distribution matching methods. 2) Reweighting. When the proportions of groups differ in two do-
mains, reweighting the examples in source domain can approximate the target distribution. Coston
et al. (2019) use reweighting to deal with fairness problem under covariate shift and Giguere et al.
(2022) use reweighting together with a fairness test to guarantee the fairness under demographic
shift. Reweighiting methods strongly rely on the support cover assumption which might satisfied
under subpopulation shift, while is not applicable to domain shift. 3) Distributionally robust opti-
mization (DRO). This line of work considers unknown target data that can be any arbitrary weighted
combinations of the source dataset, and train a fair model that is robust to the worst-case shift (Rezaei
et al., 2020; Mandal et al., 2020). These methods also assume subpopulation shift instead of domain
shift. 4) Causal inference. Singh et al. (2021) do causal domain adaptation and DRO based on a
well-characterized causal graph which describes the data construction and distribution shift. Causal
methods highly rely on the correct causal graph which is hard to obtain in reality. For example,
Schrouff et al. (2022) find that the causal graph in real applications (e.g. predicting the skin condi-
tion in dermatology) is far more complicated which violates normal assumptions, and thus making
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those approaches inapplicable. There are also studies aim to maintain fairness under distribution
shifts through online learning (Zhang et al., 2021a) or robustness (Wang et al., 2022). To the best
of our knowledge, this is the first work that use self-training to transfer fairness. Some work also
study self-supervised learning and fairness, yet they use unlabeled data and self-training to improve
the in-distribution fairness (Chzhen et al., 2019; Zhang et al., 2020; Chakraborty et al., 2021) which
is different from our research problem.

B PROOFS

The proof of theorem 2.1 is based on theorem B.2 and B.3.

Theorem B.1. (Restatement of Lemma A.8 in Wei et al. (2021)) We assume that U i
a satisfies (ᾱ, c̄)-

multiplicative expansion for PUi
a
(M(gtc)) ≤ ᾱ < 1/3 and c̄ > 3. We define c ≜ min{1/ᾱ, c̄}.

Then for any classifier g : X → Y , the error of it on the subpopulation U i
a is upper bounded as:

εUi
a
(g) ≤ c+ 1

c− 1
LUi

a
(g, gtc) +

2c

c− 1
RUi

a
(g)− εUi

a
(gtc) (8)

Theorem B.2. (A constraint version of the above theorem) We assume that U i
a satisfies (ᾱ, c̄)-

multiplicative expansion for PUi
a
(M(gtc)) ≤ ᾱ < 1/3 and c̄ > 3. We define c ≜ min{1/ᾱ, c̄}.

Then for any classifier g : X → Y satisfies LUi
a
(g, gtc) ≤ εUi

a
(gtc), the error of it on the subpopu-

lation U i
a is upper bounded as:

εUi
a
(g) ≤ 2

c− 1
εUi

a
(gtc) +

2c

c− 1
RUi

a
(g) (9)

Proof.

εUi
a
(g) ≤ c+ 1

c− 1
LUi

a
(g, gtc) +

2c

c− 1
RUi

a
(g)− εUi

a
(gtc) (10)

εUi
a
(g) ≤ εUi

a
(gtc)−

c− 3

c− 1
LUi

a
(g, gtc) +

2c

c− 1
RUi

a
(g) (because LUi

a
(g, gtc) ≤ εUi

a
(gtc))

εUi
a
(g) ≤ 2

c− 1
εUi

a
(gtc) +

2c

c− 1
RUi

a
(g) (11)

Theorem B.3. If LUi
a
(g, gtc) ≤ εUi

a
(gtc), we have

εUi
a
(g) ≥ εUi

a
(gtc)− LUi

a
(g, gtc) (12)

Proof. By triangle inequality.

Theorem B.4. (same as theorem 2.1.) If we have a teacher classifier gtc with bounded unfairness
such that |εUi

a
(gtc)− εUi′

a′
(gtc)| ≤ γ,∀a, a′ ∈ A and i, i′ ∈ Y . We assume that U i

a satisfies (ᾱ, c̄)-

multiplicative expansion and εUi
a
(gtc) ≤ ᾱ < 1/3 and c̄ > 3,∀a, i. We define c ≜ min{1/ᾱ, c̄}.

Set µ ≤ εUi
a
(gtc),∀a, i. If we train our classifier using the following algorithm

min
g∈G

max
a,i

RUi
a
(g) (13)

s.t. LUi
a
(g, gtc) ≤ µ ∀a, i (14)

and denote the optimal solution as ĝ. Then the error and unfairness of ĝ on the population distribu-
tion are bounded as

ε(ĝ) ≤ 2

c− 1
ε(gtc) +

2c

c− 1
R(ĝ) (15)

∆odds ≤
2

c− 1
(γ + µ+ cmax

a,i
RUi

a
(ĝ)) (16)
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Proof. The upper bound of ε(ĝ) could be directly get from theorem B.2. With theorem B.2 and B.3,
we have

∆odds =
1

2

∣∣∣εU0
0
(g)− εU0

1
(g)

∣∣∣+ 1

2

∣∣∣εU1
0
(g)− εU1

1
(g)

∣∣∣ (17)

≤ 1

2
max

{
2

c− 1
(γ + LU0

1
(g, gtc) + cRU0

0
(g)),

2

c− 1
(γ + LU0

0
(g, gtc) + cRU0

1
(g))

}
(18)

+
1

2
max

{
2

c− 1
(γ + LU1

1
(g, gtc) + cRU1

0
(g)),

2

c− 1
(γ + LU1

0
(g, gtc) + cRU1

1
(g))

}
(19)

≤ µ+
2

c− 1
(γ +max

a,i
LUi

a
(ĝ, gtc)). (20)

C DETAILS OF EXPERIMENTS

C.1 SYNTHETIC DATASET

The 3D Shapes dataset (Kim & Mnih, 2018) contains 64 x 64 RGB images of 3D shapes with
ground truth factors: shape[4], scale[8], orientation[15], floor colour[10], wall colour[10], object
colour[10]. The ground truth factors are desirable for studying synthetic distribution shifts, where
we choose one factor as the class label Y, one factor as the sensitive attribute A, and one factor as
the domain D. In our experiments, we chose shape as Y, object colour as A, and scale as domain.
We binarized Y and A by taking two choices of each factor, to satisfy the assumption in LAFTR.
We constructed source and target domains to have 4 different types of domain shifts: (a) Sub-
population shift with the same domain choices with different distributions PS(Y,A) = PT (Y,A),
PS(D) ̸= PT (D), (b) Subpopulation shift with the same domain and different joint distribution
of class Y and sensitive attribute PS(Y,A) ̸= PT (Y,A), PS(D) = PT (D), (c) Domain shift
with different domain distributions and same joint distribution of class Y and sensitive attribute
A PS(Y,A) = PT (Y,A), PS(D) ̸= PT (D), and (d) Domain shift with different domain distribu-
tions and different joint distributions of class Y and sensitive attribute A PS(Y,A) ̸= PT (Y,A),
PS(D) ̸= PT (D).
Scale (D) has 8 choices which are ordered. For (a), we experimented with domain of scale with
distribution in source [ 4

16 ,
4
16 ,

3
16 ,

1
16 ,

1
16 ,

1
16 ,

1
16 ,

1
16 ], and domain of scale distribution in target

[ 1
16 ,

1
16 ,

1
16 ,

1
16 ,

1
16 ,

3
16 ,

4
16 ,

4
16 ]. The joint distribution of shape (Y) and object color (A) are the same

in two domains, Y0A0 = 0.1, Y0A1 = 0.4, Y1A0 = 0.4, Y1A1 = 0.1.
For (b), we experimented with the same domain distribution of scale in source and target,
[ 18 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ]. The joint distribution of shape (Y) and object color (A) are shifted from

Y0A0 = 0.1, Y0A1 = 0.4, Y1A0 = 0.4,Y1A1 = 0.1, to Y0A0 = 0.4, Y0A1 = 0.1, Y1A0 =
0.1,Y1A1 = 0.4.
For (c), we experimented with different domain distribution of scale, [ 12 ,

1
2 , 0, 0, 0, 0, 0, 0] in source

and [ 18 ,
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ] in target. The joint distribution of shape (Y) and object color (A) are the

same, Y0A0 = 0.1, Y0A1 = 0.4, Y1A0 = 0.4,Y1A1 = 0.1.
For (d), we experimented with different domain distribution of scale, [ 12 ,

1
2 , 0, 0, 0, 0, 0, 0] in source

and [ 18 ,
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ] in target. The joint distribution of shape (Y) and object color (A) are

shifted from, Y0A0 = 0.1, Y0A1 = 0.4, Y1A0 = 0.4,Y1A1 = 0.1, to Y0A0 = 0.4, Y0A1 = 0.1,
Y1A0 = 0.1,Y1A1 = 0.4.
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