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ABSTRACT

Differential privacy provides a theoretical framework for processing a dataset
about n users, in a way that the output reveals a minimal information about any
single user. Such notion of privacy is usually ensured by noise-adding mecha-
nisms and amplified by several processes, including subsampling, shuffling, itera-
tion, mixing and diffusion. In this work, we provide privacy amplification bounds
for quantum and quantum-inspired algorithms. In particular, we show for the first
time, that algorithms running on quantum encoding of a classical dataset or the
outcomes of quantum-inspired classical sampling, amplify differential privacy.
Moreover, we prove that a quantum version of differential privacy is amplified
by the composition of quantum channels, provided that they satisfy some mixing
conditions.

1 INTRODUCTION

Differential Privacy (DP) Dwork et al. (2006); Dwork & Roth (2014) is a rigorous mathematical
framework for preserving the information of each individual in a dataset while enabling to analyse
and process the dataset. Intuitively, a differentially private algorithm can learn a statistical property
of a dataset consisting of n users, yet it leaks almost nothing about each individual user. Such
mechanisms are of great interest and importance when dealing with sensitive data like hospital data,
banks, social media, etc. Apart from privacy-preserving data analysis, differential privacy has also
found several applications in other fields of computer science such as machine learning Chaudhuri
et al. (2011); Abadi et al. (2016); Papernot et al. (2017); Bassily et al. (2018), statistical learning
theory Kasiviswanathan et al. (2011); Wang et al. (2016); Bun et al. (2020); Arunachalam et al.
(2021), mechanism design McSherry & Talwar (2007).

Since its introduction, multiple analytical tools for the design of private data analyses have been
developed Dwork et al. (2010); Kairouz et al. (2017); Hardt & Rothblum (2010); Hardt et al. (2012).
Most commonly, these mechanisms exploit techniques like adding noise to the final output or ran-
domizing the input. A loose analysis of complex mechanisms built out of these blocks can be
conducted with simple tools, such as basic composition rules and robustness to post-processing.
However, the inherent trade-off between privacy and utility in practical applications ignited the de-
velopment of more refined rules leading to tighter privacy bounds. A trend in this direction is to show
that several sources of randomness amplify the guarantees of standard DP mechanisms. In particu-
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lar, DP amplification results have been shown for subsampling, iteration, mixing and shuffling Balle
et al. (2018); Feldman et al. (2018); Balle et al. (2019); Cheu et al. (2019).

Given the major influence of quantum computing and quantum information in the past decades
over different areas of computer science, an interesting question is whether quantum and quantum-
inspired algorithms can enhance differential privacy. This question becomes specifically more rel-
evant with the availability of Noisy Intermediate Scale Quantum devices (NISQ) today Preskill
(2018). The noisy nature of these devices (also previously exploited by Du et al. (2021)) on one
hand, and the potential capabilities of quantum algorithms, on the other hand, make such quantum
or hybrid quantum-classical mechanisms, an interesting subject of study from the point of view of
differential privacy. Furthermore, the connection between machine learning and differential privacy
suggests that answering this question can lead to intriguing insights into the capabilities of quantum
machine learning.

Differential privacy has been extended to quantum computation in Zhou & Ying (2017) and Aaron-
son & Rothblum (2019). One of the main challenges in translating the definition of DP in the
quantum setting is to characterise the notion of neighbouring quantum states. Recall that, in the
classical setting, two neighbouring datasets differ in at most one single entry. In the two mentioned
works, the adopted definitions of neighbouring quantum states are significantly different, and are
respectively based on bounded trace distance and reachability by a single local operation. For the
purpose of this paper, we follow the definition of Zhou & Ying (2017).

Quantum private PAC learning has been defined in Arunachalam et al. (2020) and a quantum analog
of the equivalence between private classification and online prediction has been shown in Arunacha-
lam et al. (2021). Moreover, an equivalence between learning with quantum local differential privacy
and QSQ learning was provided in Angrisani & Kashefi (2022).

Our contributions. In this paper, we initiate a systematic study of differential privacy amplifi-
cation in quantum and quantum-inspired algorithms. We provide three types of results. section 3
provides privacy amplification results when the (classical) data is encoded into a quantum state. In-
formally, we first show that quantum encoding of classical datasets leads to approximate classical
differential privacy. Moreover, we show that a quantum DP operation performed on the quantum en-
coding of a classical dataset satisfies also classical DP, under some suitable assumptions. These two
primary results show a general application of quantum information and quantum encoding for differ-
ential privacy and can be employed further to design sophisticated differentially private mechanisms
both in the classical and quantum setting. Moreover, we prove that the composition of quantum en-
coding with noisy mechanisms such as the Laplace and Gaussian mechanisms amplifies differential
privacy.

Similarly, section 4 investigates the case of quantum-inspired algorithms, a family of classical al-
gorithms equipped with an ℓ2-norm sampling oracle. We show that differential privacy, both in
the exact and approximate setting, is amplified via quantum-inspired subsampling, establishing the
concrete amplification bounds.

Finally, our last results concern quantum differential privacy. As for classical DP, quantum DP is
preserved under post-processing Zhou & Ying (2017). In section 5, we show an amplification result
for the post-processed quantum channel S ◦ T , provided that T satisfies a quantum analog of the
Dobrushin or the Doeblin condition. This is yet another general result that relies on the contraction
property of quantum channels and can be exploited to enhance differential privacy. We expand
this result by finding explicit bounds for differential privacy under the mentioned condition for
the composition of two well-known quantum channels, namely the generalized amplitude damping
channel and depolarizing channel. Furthermore, we show that the Dobrushin condition together
with unitality provides pure quantum differential privacy.

2 PRELIMINARIES

We start by introducing notation and concepts that will be used throughout the paper.

Quantum information. We briefly review the basic concepts in quantum information that we will
use throughout the paper. A d-dimensional pure state is a unit vector in Cd, written in ket notation
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as

|ψ⟩ =
d∑

i=1

αi |i⟩ .

Here |1⟩ , . . . , |d⟩ is an orthonormal basis for Cd, and the αi’s are complex numbers called ampli-
tudes satisfying |α1|2 + · · ·+ |αd|2 = 1. The notation |·⟩ reminds of the fact that the Hilbert space
has an inner product ⟨·, ·⟩, which for Hilbert spaces describing quantum systems is denoted as ⟨·|·⟩.
The left side of the inner product ⟨ψ| is the conjugate transpose of the quantum state |ψ⟩. Then the
unit-norm condition can be expressed succinctly as ⟨ψ|ψ⟩ = 1.

In general, we may also have classical probability distributions over pure states. This scenario is
captured by the formalism of mixed states, which generalises all the states in quantum mechanics
including pure states. Mixed states are conveniently described by density matrices. Formally, a
d-dimensional mixed state ρ is a d× d positive semidefinite matrix that satisfies Tr(ρ) = 1. Equiv-
alently, ρ is a convex combination of outer products of pure states with themselves:

ρ =

d∑
i=1

pi |ψi⟩ ⟨ψi| ,

where pi ≥ 0 and
∑

i pi = 1. In the special case where pi = 1, we obtain a pure state ρ = |ψi⟩ ⟨ψi|.
We write ρ⊗σ to denote the tensor product between two quantum states and we write ρ⊗m to denote
the tensor product of m copies of ρ.

Several norms and distance measures can also be defined for general quantum states. Given a Her-
mitian matrix A with eigenvalues λ1, . . . , λk, its trace norm is defined as ||A||tr := 1

2

∑d
i=1 λi. The

trace norm induces the trace distance ||ρ−σ||tr = Tr(|ρ−σ|)/2. For a pair of pure states, the trace
distance can be linked to their inner product,

|| |ψ⟩ ⟨ψ| − |ϕ⟩ ⟨ϕ| ||tr =
√
1− | ⟨ψ|ϕ⟩ |2. (1)

A superoperator S maps a mixed state ρ to the mixed state S(ρ) =
∑k

i=1BiρB
†
i , whereB1, . . . , Bk

can be any matrices satisfying
∑k

i=1B
†
iBi = I. This is the most general (norm-preserving) mapping

from mixed states to mixed states allowed by quantum mechanics. If we drop the norm-preserving
condition and we let

∑k
i=1B

†
iBi ⪯ I, then we call S a quantum operation. Quantum operations act

linearly on mixed states, in the sense that for any a, b ∈ C, S(aρ+bσ) = aS(ρ)+bS(σ). Moreover,
quantum operations are non trace-increasing. For any hermitian matrix A, ||S(A)||tr ≤ ||A||tr. In
particular, ||S(ρ)− S(σ)||tr ≤ ||ρ− σ||tr.
The most general class of measurements to perform on mixed states are the POVMs (Positive Opera-
tor Valued Measures). In the POVM formalism, a measurementM with possible outcomes 1, 2, . . . k
is given by a list of d× d positive semidefinite matrices E1, . . . , Ek, which satisfy

∑
iEi = I. The

measurement rule is:
Pr[M(ρ) returns outcome i] = Tr(Eiρ).

Notably, trace distance has also the following physical interpretation
||ρ− σ||tr = max

M
Pr[M(ρ) accepts]− Pr[M(σ) accepts], (2)

where the maximum is taken over all possible two-outcome measurements. We also define the
infinity norm of a matrix A as the maximum of the absolute row sum value as follows,

||A||∞ = max
i

n∑
j

|aij |, (3)

Furthermore, we need to define the operator infinity norm or ℓ∞-norm. The vector space ℓ∞ is a
sequence space whose elements are the bounded sequences. The ℓ∞ space in a Banach space with
respect to the following norm,

||x||∞ = sup
n

|xn|. (4)

The operator norm on the Hilbert space is defined over the space of bounded linear operators as,
||O||∞ = sup ||Ox|| : ∀||x|| ≤ 1. (5)

We also note that, for the operator norms, ||.||1 is the dual norm of ||.||∞ (Hiai & Ruskai (2016)).
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Differential privacy. In the standard model of differential privacy, a trusted curator collects the
raw data of the individuals and is responsible for their privacy. On the contrary, in the local model
the curator is possibly malicious, and hence each individual submits their own privatized data. More
formally, consider a statistical dataset, i.e. a vector x = (x1, . . . , xn) over a domain X , where
each entry xi ∈ X represents information contributed by a single individual. Datasets x and x′ are
neighbors if xi ̸= x′i for at most one i ∈ [n]. We denote the neighbor relation with x ∼ x′. A
randomized algorithm A is (ε, δ)-differentially private if for any two neighbor datasets x, x′ and for
every subset F of the possible outcomes of A we have

Pr[A(x) ∈ F ] ≤ eε Pr[A(x′) ∈ F ] + δ.

We denote as pure differential privacy the special case where δ = 0, while in the most gen-
eral case we have approximate differential privacy. One popular method to ensure (ε, 0)-DP is
the Laplace mechanism. Given a scalar function f : Xn −→ R we define its ℓ1-sensitivity as
∆ = maxx∼x′ |f(x′)− f(x)|. The Laplace mechanism consists in adding a random perturbation η
to f(x), where η ∼ Laplace(∆/ε) := ε

2∆ exp
(
−|η| ε∆

)
.

An additional widely-used method is the Gaussian mechanism, that ensures (ε, δ)-DP. Given a func-
tion f as defined above, the Gaussian mechanism consists in adding a random perturbation η to
f(x), where η ∼ N (0, σ2) := 1√

2πσ2
exp

(
− η2

2σ2

)
and σ2 = 2 ln(1.25/δ)∆2/ε2.

We now turn our attention to the local model. Following the notation used in Kasiviswanathan et al.
(2011), we say that a randomized algorithm over datasets is (ε, δ)-local differentially private if it’s
an (ε, δ)-differentially private algorithm that takes in input a dataset of size n = 1.

The most common mechanism for local differential privacy is randomized response (RR). For a
dataset x = (x1, . . . , xn) ∈ {0, 1}n, each xi is mapped to a random bit zi, such that zi = xi with
probability eε+δ

1+eε and zi = 1−xi with probability 1−δ
1+eε . It is easy to see that for each i the algorithm

that maps xi to zi is (ε, δ)-local differentially private.

Interestingly, differential privacy provides several desired learnability properties, including some
notions of robustness, stability and generalization. Concerning robustness to adversarial examples,
we recall here the result stated in (Lemma 1, Lecuyer et al. (2019)). Let Bp(r) := {α ∈ Rn :
||α||p ≤ r} be the p-norm ball of radius r. For a given classification model f and a fixed input
x ∈ Rn, an attacker is able to craft a successful adversarial example of size L for a given p-norm if
they find α ∈ Bp(L) such as f(x + α) ̸= f(x). The attacker thus tries to find a small change to x
that will significantly change the predicted label. Now, suppose that a randomized function A, with
bounded output A(x) ∈ [0, b], b ∈ R+, satisfies (ε, δ)-DP. Then the expected value of its output
meets the following property:

∀α ∈ Bp(1) : E(A(x)) ≤ eεE(A(x+ α)) + bδ

where the expectation is taken over the randomness in A.

Following the approach proposed in Zhou & Ying (2017), we say that a quantum operation E is
(τ, ε, δ)-quantum differentially private (QDP), if for every POVMM , for all subset S of the possible
outcomes, and for all inputs ρ, σ such that ||ρ− σ||tr ≤ τ ,

Pr[M(E(ρ)) output is in S] ≤ eε Pr[M(E(σ)) output is in S] + δ. (6)
Two alternative definitions, in term of the quantum max-relative entropy and the quantum hockey-
stick divergence were introduced in Hirche et al. (2022).
Theorem 1 (Proposition 1, Zhou & Ying (2017)). Let E be a quantum operation that is (τ, ε, δ)-
QDP. Let F be an arbitrary quantum operation. Then the composition of E and F

F ◦ E : ρ 7→ F(E(ρ))
is (τ, ε, δ)-QDP.

3 AMPLIFICATION BY QUANTUM ENCODING

In quantum computation, a classical dataset x ∈ X can be mapped to a quantum state with a data-
encoding feature map, also referred as quantum encoding, that is a classical-to-quantum transforma-
tion

x 7→ ρ(x) = |ϕ(x)⟩ ⟨ϕ(x)| .
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Given a dataset x = (x1, . . . , xn), where each xi is a binary string, one of the most common
information encoding strategy is the basis encoding, which is described by a uniform superposition
of computational basis states

x 7→ 1√
n

n∑
i=1

|xi⟩ .

For a complex value dataset x ∈ Cn, it’s convenient to adopt the amplitude encoding (also referred
as wavefunction encoding in LaRose & Coyle (2020)),

x 7→
n∑

i=1

xi |i⟩ .

We always assume that the input vector x is normalised as ||x||2 =
∑

i |xi|2 = 1. For convenience,
we set the following parameter, that will be employed in the following.

Γ(x) := max
j

|xj |2. (7)

For a dataset x ∈ [0, 2π]n we can define the rotation encoding,

x 7→
1∑

q1...qn=0

n∏
k=1

cos(xk)
qk sin(xk)

1−qk |q1, . . . , qk⟩ .

As noted in Schuld (2021), a quantum encoding gives rise to a quantum kernel, which is the inner
product between two data-encoding feature vectors. For any x, x′ ∈ X , the quantum kernel induced
by ϕ is

κϕ(x, x
′) = ||ρ(x)ρ(x′)||tr = | ⟨ϕ(x)|ϕ(x′)⟩ |2, (8)

Since we are dealing with differential privacy, quantum kernels evaluated on neighbor inputs are of
particular interest. To this end, we define the quantum minimum adjacent kernel

κ̂ϕ := min
x∼x′

κϕ(x, x
′).

The expressions of κϕ and κ̂ϕ for the quantum encodings defined above can be found in Table (1).
We refer to Schuld (2021) for more details and more examples of quantum kernels.

We observe that the minimum adjacent kernels allows us to connect the quantum and classical
definition of differential privacy.

Lemma 1 (Quantum-to-classical DP). Let x ∈ X and let A be a quantum algorithm that takes
as input only ρ(x) = |ϕ(x)⟩ ⟨ϕ(x)| and performs a (

√
1− κ̂ϕ, ε, δ)-QDP quantum operation E on

ρ(x). Then A ◦ ρ is (ε, δ)-DP.

Proof. Let x, x′ two neighbouring datasets and |ϕ(x)⟩ , |ϕ(x′)⟩ their corresponding encodings. By
definition, their trace distance is upper bounded by the minimum adjacent kernel,

||ρ(x)− ρ(x′)||tr ≤
√
1− | ⟨ϕ(x)|ϕ(x′)⟩ |2 :=

√
1− κϕ(x, x′) ≤

√
1− κ̂ϕ.

By definition of quantum differential privacy, for any measurement M , and for any subset S of the
possible outcomes,

Pr[M(E(ρ(x))) output is in S] ≤ eε Pr[M(E(ρ(x′))) output is in S] + δ.

Since quantum DP is robust to post-processing (Theorem 1), the former inequality implies that the
algorithm A ◦ ρ is (ε, δ)-DP.

Moreover, we can show that if κ̂ϕ is larger than 0, then any quantum algorithm that accesses solely
the quantum encoding of a classical dataset satisfies approximate differential privacy.

Lemma 2 (Approximate DP by quantum encoding). Let x ∈ X and let A be a quantum algorithm
that takes as input only ρ(x) = |ϕ(x)⟩ ⟨ϕ(x)|. Then A ◦ ρ is (0,

√
1− κ̂ϕ)-DP.
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Table 1: Quantum kernels and quantum minimum adjacent kernels for several quantum encodings.
Here δx,y is the Kronecker function and Γ(x) is the parameter defined in Eq. (7).

ENCODING ϕ κϕ(x, x
′) κ̂ϕ

BASIS ENCODING
∑

i δxi,x
′
i

1− 1/n

AMPLITUDE ENCODING |x†x′|2 1− Γ(x)
ROTATION ENCODING

∏
i | cos(xi − x′

i)|2 0

Algorithm 1 Composition of quantum encoding and a noise-adding mechanism
Input: a dataset x = (x1, . . . , xn), a POVM M with outcomes in {0, 1}, a distribution D
for i = 1 to m do

Perform the feature map x 7→ ρ(x) = |ϕ(x)⟩ ⟨ϕ(x)|
Apply M to ρ(x) and store the output in yi

end for
Compute the mean µ = 1

m

∑m
i=1 yi and output O = µ+ η, where η ∼ D.

Proof. Since differential privacy is preserved under post-processing, we can assume that A consists
of a quantum operation S followed by a POVM measurement M . Let F be a subset of the possible
outcomes of M . We define the two-outcome measurement M ′ such that M ′ runs M and accepts if
the resulting outcome is in F , otherwise it rejects. Plugging Eq. (8) and Eq. (1) into Eq. (2), we get
the following bound:

Pr[M(S(ρ(x)) ∈ F ]− Pr[M(S(ρ(x′)) ∈ F ]

= Pr[M ′(S(ρ(x)) accepts]− Pr[M ′(S(ρ(x′)) accepts]

≤ ||S(ρ(x))− S(ρ(x′))||tr ≤ ||ρ(x)− ρ(x′)||tr =
√
1− | ⟨ϕ(x)|ϕ(x′)⟩ |2 ≤

√
1− κ̂ϕ.

Thus the algorithm A ◦ ρ is (0,
√

1− κ̂ϕ)-DP.

So far we have shown that quantum encodings inherently provide approximate differential privacy,
under some suitable assumptions. In the following, we study the interaction of quantum encoding
and classical noise-adding mechanisms, as sketched in algorithm 1. In particular, we show DP am-
plification results for the Laplace and Gaussian mechanisms. We state these results in a probabilistic
fashion, but we remark that the failure probability can be absorbed in the δ parameter by applying
Lemma 1.5 in Vadhan (2017).
Theorem 2 (Composition of quantum encoding and Laplace mechanism). Let x,m,M, ρ be as in
algorithm 1. Let D = Laplace( 1ε (

√
1− κ̂ϕ + t)) for any t ≥ 0. Then algorithm 1 is (ε, 0)-DP with

exponentially high probability in t and m.

Proof. Let x, x′ be two neighbouring datasets. Denote as y′i and µ′ the outcomes of M on input
ρ(x′) and their mean, respectively. First, we make the following observation

|E[M(ρ(x))−M(ρ(x′))]| = |Pr[M(ρ(x)) = 1]− Pr[M(ρ(x′)) = 1]| ≤
√
1− κ̂ϕ.

We apply now the Chernoff-Hoeffding’s bound

Pr

[∣∣∣∣∣ 1m
m∑
i=1

yi − E[M(ρ(x))]

∣∣∣∣∣ ≥ t

2

]
≤ 2e−mt2 .

Thus with probability 1− 4e−mt2 the means µ and µ′ are within an additive factor t+
√
1− κ̂ϕ.

Since η ∼ Laplace((t+
√
1− κ̂ϕ)/ε), we have that for any z ∈ R,

Pr[µ+ η = z] ≤ eε Pr[µ′ + η = z]

with probability at least 1 − 4e−mt2 . In other words, a Laplace perturbation of parameter (t +√
1− κ̂ϕ)/ε ensures (ε, 0)-DP with high probability in t and m.
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Theorem 3 (Composition of quantum encoding and Gaussian mechanism). Let x,m,M, ρ be as in
algorithm 1. Let D = N (0, σ2) where σ2 = 2 ln(1.25/δ)(

√
1− κ̂ϕ + t)2/ε2 for any t ≥ 0. Then

algorithm 1 is (ε, δ)-DP with exponentially high probability in t and m.

Proof. Let x, x′ be two neighbouring datasets. Denote as y′i and µ′ the outcomes of M on input
ρ(x′) and their mean, respectively. By applying the same arguments of the proof of Theorem 2, we
show that, with probability 1−4e−mt2 the means µ and µ′ are within an additive factor t+

√
1− κ̂ϕ.

Since η ∼ N (0, σ2) with σ2 = 2 ln(1.25/δ)(
√
1− κ̂ϕ + t)2/ε2, we have that for any z ∈ R,

Pr[µ+ η = z] ≤ eε Pr[µ′ + η = z] + δ.

with probability at least 1 − 4e−mt2 . So we proved that a Gaussian perturbation of parameter σ2

ensures (ε, δ)-DP with high probability in t and m.

We can obtain explicit privacy amplification bounds by combining the values of κ̂ϕ in Table (1) with
the results of this section. Remark that, unlike the basis and the amplitude encoding, the rotation
encoding provides no privacy amplification, as κ̂ϕ = 0 in that case.

4 AMPLIFICATION BY QUANTUM-INSPIRED SAMPLING

In quantum-inspired algorithms Tang (2019; 2021); Gilyén et al. (2018); Chia et al. (2018; 2020),
we simulate the measurement of |x⟩⊗m in the computational basis and process the outcomes with a
classical algorithm. Quantum-inspired subsampling generalizes the uniform subsampling. Indeed,
uniform subsampling can be recovered as a special case when Γ(x) = 1/n.

We will show the intuitive fact that quantum-inspired subsampling amplifies DP. Our argument is
similar to the one of (Problem 1.b, Ullman (2017)) for uniform subsampling, but we include the
complete proof here for clarity. Given a normalised vector x = (x1, . . . , xn) ∈ Cn, let |x⟩ :=∑n

i=1 xi |i⟩ be the amplitude encoding defined in the previous section.
Theorem 4 (DP amplification by quantum-inspired sampling). For any x ∈ Cn, let s =

(s1, . . . , sm) be the measurement outcomes in the computational basis of |x⟩⊗m. Denote S as
the sampling mechanism that maps x into s. Let A be a (ε, δ)-DP algorithm that takes only s as
input. Then A′ = A ◦ S is (ε′, δ′)-DP, with ε′ = log(1 + (eε − 1)Γ(x)m) and δ′ = δΓ(x)m.

Proof. We will use T ⊆ {1, . . . , n} to denote the identities of the m-subsampled elements
s1, . . . , sm (i.e. their index, not their actual value). Note that T is a random variable, and that
the randomness of A′ := A◦S includes both the randomness of the sample T and the random coins
of A. Let x ∼ x′ be adjacent datasets and assume that x and x′ differ only on some row t. Let s
(or s′) be a subsample from x (or x′) containing the rows in T . Let F be an arbitrary subset of the
range of A). For convenience, define p = Γ(x)m. Note that, by definition of quantum amplitude
encoding and by union bound,

Pr[i ∈ T ] ≤ mPr[|x⟩ collapses to state |i⟩] = |xi|2 ≤ mΓ(x) := p

To show (log(1 + p(eε − 1)), pδ)-DP, we have to bound the ratio

Pr[A′(x) ∈ F ]− pδ

Pr[A′(x′) ∈ F ]
≤ pPr[A(s) ∈ F |i ∈ T ] + (1− p) Pr[A(s) ∈ F |i ̸∈ T ]− pδ

pPr[A(s′) ∈ F |i ∈ T ] + (1− p) Pr[A(s′) ∈ F |i ̸∈ T ]

by p(1 + (eε − 1)). For simplicity, define the quantities

C = Pr[A(s) ∈ F |i ∈ T ]

C ′ = Pr[A(s′) ∈ F |i ∈ T ]

D = Pr[A(s) ∈ F |i ̸∈ T ] = Pr[A(s′) ∈ F |i ̸∈ T ].

We can rewrite the ratio as
Pr[A′(x) ∈ F ]− pδ

Pr[A′(x′) ∈ F ]
=
pC + (1− p)D − pδ

pC ′ + (1− p)D
.
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Now we use the fact that, by (ε, δ)-DP, C ≤ min{C ′, D}+ δ. Plugging all together, we get

pC + (1− p)D − pδ ≤ p(eε min{C ′, D}) + (1− p)D

≤ p(min{C ′, D}+ (eε − 1)min{C ′, D}) + (1− p)D

≤ p(C ′ + (eε − 1)(pC ′ + (1− p)D)) + (1− p)D

≤ (pC ′ + (1− p)D) + p(eε − 1))(pC ′ + (1− p)D) ≤ (1 + p(eε − 1))(pC ′ + (1− p)D),

where the third-to-last line follow from min{x, y} ≤ αx + (1 − α)y for every 0 ≤ α ≤ 1. To
conclude the proof, we rewrite the ratio and get the desired bound.

Pr[A′(x) ∈ F ]− pδ

Pr[A′(x′) ∈ F ]
≤ 1 + p(eε − 1).

If we don’t require A to be (ε, δ)-DP, we obtain the following corollary as a special case of Theo-
rem 4.
Corollary 1 (Approximate DP by quantum-inspired sampling). For any x ∈ Cn, let s =

(s1, . . . , sm) be the measurement outcomes in the computational basis of |x⟩⊗m. Denote S as
the sampling mechanism that maps x into s. Let A be an algorithm that takes only s as input. Then
A ◦ S is (0,Γ(x)m)-DP.

5 AMPLIFICATION BY QUANTUM EVOLUTION

In this section, we look at quantum operations and how they can amplify differential privacy. First,
we show a general result regarding the QDP amplification for distance-decreasing quantum opera-
tions and then we explore some explicit examples for certain classes of quantum channels. To es-
tablish our results, we first need to characterize quantum channels, in terms of the quantum analogs
of the classical mixing conditions introduced in Doeblin (1937); Dobrushin (1956).
Definition 1. Let T : H −→ H′ be a quantum operation and γ ∈ [0, 1]. We say that T is:

1. γ-Dobrushin if

sup
ρ ̸=σ

||T (ρ)− T (σ)||tr
||ρ− σ||tr

≤ γ.

2. γ-Doeblin if there exists a quantum operation T ′ : H −→ H′ such that T ′(X) = Tr[X]Y
for some Y ∈ H′ and T − γT ′ is positive.

We remark that the ηTr(T ) := inf{γ : T is γ-Dobrushin}, where ηTr(T ) is the quantum Dobrushin
coefficient introduced in Gaubert & Qu (2015); Hiai & Ruskai (2016).
Lemma 3 (adapted from Wolf (2012), Theorem 8.17). Let T be a γ-Doeblin quantum operation
with γ ∈ [0, 1]. Then T is a (1− γ)-Dobrushin quantum operation.

Thus, we show that a post-processed quantum channel S ◦ E amplifies quantum differential privacy,
provided that T is γ-Dobrushin.
Theorem 5. Let E be a γ-Dobrushin quantum operation and let S be a (τ, ε(τ), 0)-QDP quantum
operation, where ε : R+ → [0, 1]. Then S ◦ E is (τ, ε(γτ), 0)-QDP.

Proof. Let σ and ρ two states such that ||ρ − σ||tr ≤ τ . By definition of γ-Dobrushin, the trace
distance between E(ρ) and E(σ) can be upper bounded as follows.

||E(ρ)− E(σ)||tr ≤ γ||ρ− σ||tr ≤ γτ.

The channel S is (γτ, ε(γτ), 0)-QDP, thus, for any measurement M ,

Pr[M(S(E(ρ)) ∈ F ] ≤ exp(ε(γτ)) Pr[M(S(E(σ)) ∈ F ].

The inequality above shows that S ◦ E is (τ, ε(γτ), 0)-QDP.
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To better demonstrate the application of this result, we give some explicit examples for different
quantum channels. First, we recall the definitions of some relevant quantum operations Nielsen &
Chuang (2010). The generalized amplitude damping channel for a single qubit is defined as

EGAD(ρ) =

3∑
k=0

EkρE
†
k

in the 2-dimensional Hilbert space H2, where

E0 =
√
p

[
1 0
0

√
1− γ

]
, E1 =

√
p

[
0

√
γ

0 0

]
,

E2 =
√
1− p

[√
1− γ 0
0 1

]
, E3 =

√
1− p

[
0 0√
γ 0

]
.

and p and γ are two parameters. The phase damping channel for a single qubit is defined by the
operator-sum representation

EPD(ρ) = E0ρE
†
0 + E1ρE

†
1

in the 2-dimensional Hilbert space H2, where

E0 =

[√
1 0

0
√
λ

]
, E1 =

[
0 0

0
√
λ

]
.

Thus we can compose the channels above to define the phase-amplitude damping channel

EPAD(ρ) = EGAD(EPD(ρ)).

As shown in Zhou & Ying (2017), the phase-amplitude damping channel is (d, ε, 0)-QDP, with

ε := ln

(
1 +

2d
√
1− γ

√
1− λ

1−
√
1− γ

√
1− λ

)
(9)

The depolarizing channel corresponds to the quantum operation

EDep = p
I
D

+ (1− p)ρ

where D is the dimension of the state Hilbert space and p is the probability parameter. As shown in
Zhou & Ying (2017), the depolarizing channel is (d, ε, 0)-QDP, with

ε := ln

(
1 +

1− p

p
dD

)
.

The following result characterizes a family of Dobrushin quantum operation.
Lemma 4 (Hiai & Ruskai (2016), Theorem 6.1). Let ΦT be a quantum operation such that

1. ΦT (I) = I (ΦT is unital),

2. ΦT : I+ w · σ → I+ (Tw) · σ where T is a real matrix with ||T ||∞ ≤ 1, where || · ||∞ is
the operator norm.

Then ΦT is ||T ||∞-Dobrushin.

Interestingly, the Dobrushin condition and unitality ensure quantum pure differential privacy, as we
show in the following theorem.
Theorem 6. Let Φ be a quantum operation in the 2-dimensional Hilbert space H2, such that

1. Φ(I) = I (Φ is unital),

2. Φ is γ-Dobrushin.

Then Φ is (d, log(1 + 2dγ), 0)-QDP.

9
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Table 2: The channels below satisfies (d, ε, 0)-QDP with the ε values shown in the table. We
denoted as Φγ an arbitrary γ-Dobrushin unital channel.

CHANNEL ε REFERENCE

EDep ln
(
1 + 1−p

p
dD

)
ZHOU & YING (2017)

EPAD ln
(
1 + 2d

√
1−γ

√
1−λ

1−
√
1−γ

√
1−λ

)
ZHOU & YING (2017)

Φγ ln(1 + 2dγ) THEOREM 6
EPAD ◦ EDep (1− p) ln

(
1 + 2d

√
1−γ

√
1−λ

1−
√
1−γ

√
1−λ

)
THEOREM 7

Proof. Consider two arbitrary qubit states ρ1, ρ2 and set ||ρ1 − ρ2||tr := d. The γ-Dobrushin
condition can be restated as follows:

||Φ(ρ1)− Φ(ρ2)||tr ≤ γ||ρ1 − ρ2||tr = γd.

Given an arbitrary POVM M = {Mm}, we want to bound the following quantity

Tr{Φ(ρ1)Mm}
Tr{Φ(ρ2)Mm}

− 1

First, we upper bound the numerator:

Tr{Φ(ρ1)Mm} − Tr{Φ(ρ2)Mm} = Tr{(Φ(ρ1)− Φ(ρ2))Mm} ≤ dγ Tr{Mm}.

Since ρ2 is a qubit state, can write ρ2 = 1
2 (I+ r · σ) for a Bloch vector r.

Tr{Φ(ρ2)Mm} = Tr

{
1

2
Φ(I+ r · σ)Mm

}
≥ 1

2
Tr{Φ(I)Mm} =

1

2
Tr{Mm},

where we used unitality in the last inequality. Putting all together, we get

Tr{Φ(ρ1)Mm}
Tr{Φ(ρ2)Mm}

− 1 ≤ dγ Tr{Mm}
1
2 Tr{Mm}

= 2dγ.

Thus the channel Φ is log(1 + 2dγ)-QDP.

Tr{Φ(ρ1)Mm}
Tr{Φ(ρ2)Mm}

≤ eε,

where ε := ln(1 + 2dγ).

Finally, we show how Theorem 5 can be used to derive privacy amplification bounds for the compo-
sition of several channels.
Theorem 7. The composition of the depolarizing channel and the phase-amplitude damping channel
EPAD ◦ EDep is (d, ε, 0)-QDP, where

ε = (1− p) ln

(
1 +

2d
√
1− γ

√
1− λ

1−
√
1− γ

√
1− λ

)
.

Proof. We use the fact that the depolarizing channel EDep satisfies the Dobrushin condition. This
can be shown either by direct computation or by observing that EDep satisfies the hypothesis of
Lemma 4 with ||T ||∞ = 1− p. Then we can combine Eq. (9) with Theorem 5 to derive the desired
bound for the composed channel EPAD ◦ EDep.

6 DISCUSSION AND FUTURE WORK

We have undertaken a systematic study of differential privacy amplification in quantum and
quantum-inspired algorithms. Our work is the first to reason about quantum encodings through
the lens of differential privacy, laying the foundation for further analysis. Prior to this work, the
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choice of the encoding was motivated mainly by expressiveness Schuld et al. (2021), efficiency,
generalization Caro et al. (2021) and robustness to experimental noise LaRose & Coyle (2020). Due
to the intimate relation between DP, algorithmic stability and robustness to adversarial examples, our
results suggest new criteria for the choice of quantum encodings. Previous work explored the rela-
tion between experimental noise, quantum differential privacy and robustness. The tighter bounds
presented in our paper can be used to improve the result of Du et al. (2021), taking into account the
composition of several mechanisms. Moreover, the amplitude encoding is employed in many quan-
tum machine learning algorithms with potential quantum speed-ups, such as Harrow et al. (2009);
Wiebe et al. (2012); Rebentrost et al. (2014); Kerenidis & Prakash (2017); Biamonte et al. (2017);
Kerenidis et al. (2019a;b); Kerenidis & Landman (2021). Our results can found application in the
analysis of privacy-preserving versions of these algorithms.

In the future, it would be interesting to provide similar amplification results for the notion of quantum
differential privacy employed in Aaronson & Rothblum (2019). As previously mentioned, in the
quantum setting, different definitions of neighbouring quantum states lead to different notions for
quantum differential privacy. Thus, understanding the relationship between these notions is of both
theoretical and practical interest. To this end, one could also adopt the variety of quantum distances
available in the quantum information literature. One of the best candidates for this purpose is the
quantum Wasserstein distance introduced in De Palma et al. (2021), which generalises the notion of
neighbouring quantum states of Aaronson & Rothblum (2019). Furthermore, the relation between
the contraction coefficient of quantum channels and DP which we have explored in this paper can
also be studied alternatively with this distance due to the contractivity results proved in De Palma
et al. (2021).

Another interesting future direction would be to expand our composition results and the previous
work of Zhou & Ying (2017) on the differential privacy of specific quantum channels, to more
general classes of quantum operations, in term of their general characteristics such as contraction
coefficients or channel capacity. On this note, a good candidate would be to study the effect of the
class of LOCC (Local Operations and Classical Communication) operations on both classical and
quantum differential privacy. This class is of particular interest due to its relation to entanglement,
which is another non-classical and unique property of the quantum world to be studied in the context
of differential privacy.

Finally, as a follow up of our theoretical results, we aim to investigate the experimental implemen-
tation, their feasibility, and their application using the available NISQ devices. Experimental noise
is among the major limitations of current architectures. Yet, demonstrating that such noise provides
beneficial properties, such as privacy and robustness, could shape the pathway for new applications.
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Stéphane Gaubert and Zheng Qu. Dobrushin ergodicity coefficient for Markov operators
on cones. Integral Equations and Operator Theory, 1(81):127–150, January 2015. doi:
10.1007/s00020-014-2193-2. URL https://hal.inria.fr/hal-01099179. Also
arXiv:1307.4649.

András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochastic regression with
logarithmic dependence on the dimension, 2018.

Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving
data analysis. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp.
61–70, 2010. doi: 10.1109/FOCS.2010.85.

Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm for differen-
tially private data release. In Proceedings of the 25th International Conference on Neural Infor-
mation Processing Systems - Volume 2, NIPS’12, pp. 2339–2347, Red Hook, NY, USA, 2012.
Curran Associates Inc.

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of
equations. Physical Review Letters, 103(15), oct 2009. doi: 10.1103/physrevlett.103.150502.
URL https://doi.org/10.1103%2Fphysrevlett.103.150502.

Fumio Hiai and Mary Beth Ruskai. Contraction coefficients for noisy quantum channels. Journal
of Mathematical Physics, 57(1):015211, Jan 2016. ISSN 1089-7658. doi: 10.1063/1.4936215.
URL http://dx.doi.org/10.1063/1.4936215.
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