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ABSTRACT

Deep networks have been found to be highly susceptible to adversarial attacks. One
fundamental challenge is that it is typically possible for small input perturbations to
produce large movements in the final-layer feature space of these networks. In this
work, we define an attack model that abstracts this challenge, to help understand
its intrinsic properties. In our model, the adversary may move data an arbitrary
distance in feature space but only in random low-dimensional subspaces. We
prove that such adversaries can be quite powerful: defeating any classifier that
must output a class prediction on any input it is given. However, by giving the
algorithm the ability to abstain, we show that such an adversary can be overcome
when classes are reasonably well-separated in feature space and the dimension of
the feature space is high, by an algorithm that examines distances of test points
to training data in feature space. We further show how data-driven methods can
be used to set algorithm parameters to optimize over the accuracy vs. abstention
trade-off with strong theoretical guarantees. Our theory can also be viewed as
providing new robustness guarantees for nearest-neighbor style algorithms, and has
direct applications to the technique of contrastive learning, where we empirically
demonstrate the ability of such algorithms to obtain high robust accuracy with only
small amounts of abstention. Overall, our results provide insight into the intrinsic
vulnerabilities of non-Lipschitz networks and the ways these may be addressed.

1 INTRODUCTION

A substantial body of work has shown that deep networks can be highly susceptible to adversarial
attacks, in which minor changes to the input lead to incorrect, even bizarre classifications (Szegedy
et al., 2014; Moosavi-Dezfooli et al., 2016; Madry et al., 2018; Su et al., 2019; Brendel et al., 2018).
Much of this work has considered bounded ℓp-norm attacks, though many other forms of attack are
considered as well (Brown et al., 2018; Engstrom et al., 2017; Gilmer et al., 2018; Xiao et al., 2018;
Alaifari et al., 2019). What these results have in common is that changes that either are imperceptible
or should be irrelevant to the classification task can lead to drastically different network behaviors.

One key reason for this vulnerability to attacks is the non-Lipschitzness of typical neural networks:
small but adversarial movements in the input space can produce large perturbations in the feature
space. This ability of an adversary to produce large movements in feature space appears to be at the
heart of many of the successful attacks to date. If we assume that non-Lipschitzness is important for
good performance on natural data, then it is crucial to understand to what extent this property makes
a network instrinsically susceptible to attacks.

In this work, we propose and analyze an abstract attack model designed to focus on this question of
the intrinsic vulnerability of non-Lipschitz networks, and what might help to make such networks
robust. In particular, suppose an adversary, by making an imperceptible change to an input x, can
cause its representation F (x) in feature space (the final layer of the network) to move by an arbitrary
amount: will such an adversary always win? Clearly if the adversary can modify F (x) by an arbitrary
amount in an arbitrary direction, then yes, because it can then move F (x) into the classification
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region of any other class it wishes. But what if the adversary can modify F (x) by an arbitrary amount
but only in a random direction or within a random low-dimensional subspace? In this case, we show
an interesting dichotomy: if the classifier must output a classification on any input it is given, then
indeed the adversary will still win, no matter how well-separated the natural data points from different
classes are in feature space and no matter what decision surface the classifier uses. However, if we
provide the classifier the ability to abstain, then we show it can defeat such an adversary.

Our contributions. Conceptually, we introduce a new random feature subspace threat model to
abstract the effect of non-Lipschitzness in deep networks. Technically, we show the power of
abstention and data-driven decision-making in this setting, proving that classifiers with the ability to
abstain are provably more powerful than those that cannot in this model, and giving formal guarantees
for parameterized nearest-neighbor style algorithms. We use data-driven hyperparameter learning to
set the algorithm parameters to minimize robust error while keeping abstention on natural data low.
Experimentally, we show that our algorithms perform well in this model on representations learned
by supervised and self-supervised contrastive learning.

2 POWER OF ABSTENTION

In principle, an adversarial example for a given labeled data point (x, y) is a small perturbation x′ of
x with the same true label y but that causes the classifier to make a mistake. One of the most popular
models for adversarial examples is that of norm-bounded perturbations in the input space. Despite
a large literature devoted to defending against such adversaries by improving the Lipschitzness of
neural networks as functions mapping from input space to feature space (Zhang et al., 2019; Yang
et al., 2020), it is typically not true that small perturbations in the input space necessarily imply small
modifications in the feature space. Motivated by this fact, in this paper we study a threat model where
an adversary can modify the data by a large amount in the feature space. Note that because this large
modification in feature space is assumed to come from a small perturbation in input space, we always
assume that the true correct label y is the same for the modified point and the original point.

Our threat model. Let x ∈ X ⊆ Rn1 be a test input, embedded into feature space F ⊆ Rn2 using a
deep neural network F . The adversary may corrupt F (x) such that the modified feature vector is any
point in a random n3-dimensional affine subspace denoted by S + {F (x)}. For example, if n3 = 2
then S + {F (x)} is a random 2-dimensional plane through F (x), and the adversary may select an
arbitrary point in that plane. Conceptually, we are viewing the network as “squashing” the adversarial
ball in input space into a random infinitely thin and infinitely wide n3-dimensional pancake in feature
space. The adversary is given access to everything including the training data, F , x, S and the true
label of x. We will use adversary and adversarial example throughout to refer to this threat model.

We first present a hardness result showing that no matter how nicely data is distributed in feature
space, any classifier that is not allowed to abstain will fail even if the adversary can perturb points in
a single random direction (n3 = 1).

Theorem 2.1. For any classifier that partitions Rn2 into two or more classes, any data distribution
D, any δ > 0 and any feature embedding F , there must exist at least one class y∗, such that for
at least a 1 − δ probability mass of examples x from class y∗ (i.e., x is drawn from DX|y∗), for a
random unit-length vector v, with probability at least 1/2− δ for some ∆0 > 0, F (x) + ∆0v is not
labeled y∗ by the classifier. In other words, there must be at least one class y∗ such that for at least
1− δ probability mass of points x of class y∗, the adversary wins with probability at least 1/2− δ.

Theorem 2.1 gives a hardness result for robust classification without abstention. We will now give
positive results for a nearest-neighbor style classifier (Algorithm 1) that has the power to abstain.

Algorithm 1 ROBUSTCLASSIFIER(τ, σ)

1: Input: A test feature F (x) (potentially an adversarial example), a set of training features F (xi)
and their labels yi, i ∈ [m], a threshold parameter τ , a separation parameter σ.

2: Preprocessing: Delete training examples F (xi) if minj∈[m],yi ̸=yj
dist(F (xi), F (xj)) < σ

3: Output: A predicted label of F (x), or “don’t know”.
4: if mini∈[m] dist(F (x), F (xi)) < τ then
5: return yargmini∈[m] dist(F (x),F (xi))

6: return “don’t know”
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Denote by Ex
adv(f) := ES∼S1{∃e ∈ S + F (x) s.t. f(e) ̸= y and f(e) does not abstain} the robust

error of a given classifier f for classifying instance x. The following theorem states that so long as
the threshold τ in Algorithm 1 is sufficiently small compared to the distance r between classes, and
the dimension n2 of the ambient feature space is sufficiently large compared to the dimension n3 of
the adversarial subspace S, the algorithm will have low robust error.
Theorem 2.2. Let x ∼ DX be a test instance, m be the number of training examples and r be
the shortest distance between F (x) and F (xi) where xi is a training point from a different class.

Suppose τ = o
(
r
√
1− n3

n2

)
. The robust error of Algorithm 1, Ex

adv(ROBUSTCLASSIFIER(τ, 0)), is

at most m
(

cτ

r
√

1−n3
n2

)n2−n3

+mcn2−n3
0 , where c > 0 and 0 < c0 < 1 are absolute constants. For

the case n3 = 1, the robust error is at most m
(
τ
r

)n2−1
.

Theorem 2.2 states that the robust error of Algorithm 1 is small if the number of labeled examples m
is sub-exponential in n2 − n3. We also extend Theorem 2.2 to a more general class of adversaries,
which can have any bounded distribution over the space of linear subspaces of a fixed dimension n3

and the adversary can perturb a test feature vector arbitrarily in the sampled adversarial subspace.
Theorem 2.3. Consider the setting of Theorem 2.2, with an adversary having a κ-bounded1 distri-
bution over the space of linear subspaces of a fixed dimension n3 for perturbing the test point. If
E(τ, r) denotes the bound on error rate in Theorem 2.2 for ROBUSTCLASSIFIER(τ, 0) in Algorithm
1, then the error bound of the same algorithm against the κ-bounded adversary is O(κE(τ, r)).

We relax the well-separateness assumption in Theorems 2.2 and 2.3 by using a separation parameter
σ > 0 in Algorithm 1. We further show that we can control the frequency of outputting “don’t know”,
when the data are nicely distributed according to the following assumption.
Assumption 1. We assume that at least 1− δ fraction of mass of the marginal distribution DF (X )|y
over Rn2 can be covered by N balls B1, B2, ... BN of radius τ/2 and of mass PrDF (X)

[Bk] ≥
C0

m

(
n2 logm+ log 4N

β

)
, where C0 > 0 is an absolute constant and δ, β ∈ (0, 1).

Intuitively, it says that for every label class one can cover most of the distribution of the class with
(potentially overlapping) balls of a fixed radius, each having a small lower bound on the density
contained. This holds for well-clustered datasets (as is typical for feature data) for a sufficiently large
radius. Our analysis leads to the following guarantee on the abstention rate.
Theorem 2.4. Suppose that F (x1), ..., F (xm) are m training instances i.i.d. sampled from marginal
distribution DF (X ). Under Assumption 1, with probability at least 1− β/4 over the sampling, we
have Pr(∪m

i=1B(F (xi), τ)) ≥ 1− δ.

Theorem 2.4 implies that when Pr[Bk] ≥ β
N and m = Ω(n2N

β log n2N
β ), with probability at least

1−β/4 over the sampling, we have Pr(∪m
i=1B(F (xi), τ)) ≥ 1− δ. Therefore, with high probability,

the algorithm will output “don’t know” only for an δ fraction of natural data.

3 LEARNING DATA-SPECIFIC OPTIMAL THRESHOLDS

Given an embedding function F and a classifier fτ which outputs either a predicted class if the
nearest neighbor is within distance τ of a test point or abstains from predicting, we want to evaluate
the performance of fτ on a test set T against an adversary which can perturb a test feature vector
in a random subspace S ∼ S. To this end, we define Eadv(τ) := ES∼S

1
|T |

∑
(x,y)∈T 1{∃e ∈

S+F (x) ⊆ Rn2 s.t. f(e) ̸= y and fτ (e) does not abstain} as the robust error on the test set T , and
Dnat(τ) :=

1
|T |

∑
(x,y)∈T 1{fτ (F (x)) abstains} as the abstention rate on the natural data. Eadv(τ)

and Dnat(τ) are monotonic in τ . We can capture the trade-off between abstention rate and accuracy
in a single objective g(τ) := Eadv(τ) + cDnat(τ), where c is a positive constant and denotes the
cost of abstention (adversarial version of Chow’s objective (Chow, 1970)). We can optimize g(τ)
in a data-driven fashion and obtain theoretical guarantee on the convergence to a global optimum.
In Theorem 3.1, we show no regret can be achieved for online learning of the threshold τ using test
batches of size b. Using online-to-batch conversion, our results imply a uniform convergence bound
for objective g(τ) in the supervised setting.

1A distribution is κ-bounded if the corresponding probability density f(x) satisfies, supx f(x) ≤ κ.
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Table 1: Natural error Enat and robust error Eadv on the CIFAR-10 dataset (Szegedy et al., 2015)
when n3 = 1 and the 512-dimensional representations are learned by contrastive learning, where
Dnat represents the fraction of each algorithm’s output of “don’t know” on the natural data.

Contrastive Linear Protocol Ours (τ = 3.0) Ours (τ = 2.0)
Enat Eadv Enat Eadv Dnat Enat Eadv Dnat

(σ = 0)
Self-supervised 8.9% 100.0% 15.4% 40.7% 2.2% 14.3% 26.2% 28.7%

Supervised 5.6% 100.0% 5.7% 60.5% 0.0% 5.7% 33.4% 0.0%

(σ = 0.9τ)
Self-supervised 8.9% 100.0% 7.2% 9.4% 12.9% 10.0% 17.7% 29.9%

Supervised 5.6% 100.0% 6.2% 18.9% 0.0% 5.6% 22.0% 0.1%

(σ = τ)
Self-supervised 8.9% 100.0% 1.1% 1.2% 33.4% 2.1% 3.1% 49.9%

Supervised 5.6% 100.0% 1.9% 2.8% 10.6% 4.1% 4.8% 3.3%

Figure 1: Adversarial accuracy (i.e., rate of adversary failure) vs. abstention rate as threshold τ varies
for n3 = 1 and different outlier removal thresholds σ.

Theorem 3.1. Assume τ is o
(
min{m−1/n2 , r}

)
, and the data distribution is continuous, κ-bounded,

positive and has bounded partial derivatives. If τ is set using a continuous version of the multiplicative
updates algorithm, then with probability at least 1− δ, the expected regret for optimizing g(τ) in T

rounds is bounded by O
(√

n2T log
(

κRTmb
δrn2−n3

))
, where R is a bound on the largest distance between

any two training points, b is the batch size, and r is the smallest distance between points of different
labels.

4 EXPERIMENTS ON CONTRASTIVE LEARNING

We verify the robustness of Algorithm 1 when the representations are learned by contrastive learning.
Given a embedding function F and a classifier f which outputs either a predicted class or abstains
from predicting, recall that we define the natural and robust errors, respectively, as Enat(f) :=
E(x,y)∼D1{f(F (x)) ̸= y and f(F (x)) does not abstain}, and Eadv(f) := E(x,y)∼D,S∼S1{∃e ∈
S + F (x) ⊆ Rn2 s.t. f(e) ̸= y and f(e) does not abstain}, where S ∼ S is a random adversarial
subspace of Rn2 with dimension n3. Dnat(f) := E(x,y)∼D1{f(F (x)) abstains} is the abstention
rate on the natural examples. Note that the robust error is always at least as large as the natural error.

Our self-supervised and supervised contrastive learning setups follow (Chen et al., 2020) and (Khosla
et al., 2020) respectively. In both the setups, we compare the robustness of the linear protocol with
that of our defense protocol in Algorithm 1 under exact computation of adversarial examples using a
convex optimization program in n3 dimensions and m constraints.

Experimental results. (Table 1.) Compared with the standard linear protocol, our algorithms have
much lower robust error. Note that even if abstention is added based on distance from the linear
boundary, sufficiently large perturbations will ensure the adversary can always succeed. For an
approximate adversary which can be efficiently implemented for large n3.

The threshold parameter τ captures the trade-off between the robust accuracy Aadv := 1 − Eadv
and the abstention rate Dnat on the natural data. We report both metrics for different values of τ for
supervised and self-supervised constrastive learning. The supervised setting enjoys higher adversarial
accuracy and a smaller abstention rate for fixed τ ’s due to the use of extra label information. We plot
Aadv against Dnat for Algorithm 1 as hyperparameters vary (Figure 1). For small τ , both accuracy
and abstention rate approach 1.0. As the threshold increases, the abstention rate decreases rapidly and
our algorithm enjoys good accuracy even with small abstention rates. For τ → ∞ (i.e. the nearest
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neighbor search), both Dnat and Aadv are nearly 0%. Increasing σ (for small σ) gives us higher
robust accuracy for the same abstention rate. Too large σ also leads to degraded performance.
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Sharada P Mohanty, and Matthias Bethge. Adversarial vision challenge. arXiv preprint
arXiv:1808.01976, 2018.

Tom B Brown, Nicholas Carlini, Chiyuan Zhang, Catherine Olsson, Paul Christiano, and Ian Good-
fellow. Unrestricted adversarial examples. arXiv preprint arXiv:1809.08352, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning,
2020.

CK Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on information
theory, 16(1):41–46, 1970.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A
rotation and a translation suffice: Fooling CNNs with simple transformations. arXiv preprint
arXiv:1712.02779, 2017.

Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. Motivating the
rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732, 2018.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. arXiv preprint
arXiv:2004.11362, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2574–2582, 2016.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep neural
networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In 2nd International Conference on
Learning Representations, ICLR 2014, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

5



Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially transformed
adversarial examples. In International Conference on Learning Representations, 2018.

Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Ruslan Salakhutdinov, and Kamalika Chaud-
huri. Adversarial robustness through local Lipschitzness. In Advances in neural information
processing systems, 2020.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, 2019.

6


	Introduction
	Power of abstention
	Learning Data-Specific Optimal Thresholds
	Experiments on Contrastive Learning

