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ABSTRACT

We study the design of a class of incentive mechanisms that can effectively im-
prove algorithm robustness in strategic learning. A conventional strategic learn-
ing problem is modeled as a Stackelberg game between an algorithm designer (a
principal, or decision maker) and individual agents subject to the algorithm’s de-
cisions, potentially from different demographic groups. While the former benefits
from the decision accuracy, the latter may have an incentive to game the algorithm
into making favorable but erroneous decisions by merely changing their observ-
able features without affecting their true labels. While prior works tend to focus
on how to design decision rules robust to such strategic maneuvering, this study
focuses on an alternative, which is to design incentive mechanisms to shape the
utilities of the agents and induce improvement actions that genuinely improve their
skills and true labels and thus in turn benefit both parties in the Stackelberg game.
Specifically, the principal and the mechanism provider (could be the principal it-
self) move together in the first stage, publishing and committing to a classifier
and an incentive mechanism. The agents are second movers and best respond to
the published classifier and incentive mechanism. We study how the mechanism
can induce improvement actions, positively impact a number of social well-being
metrics, such as the overall skill levels of the agents (efficiency) and positive or
true positive rate differences between different demographic groups (fairness).

1 INTRODUCTION

This work presents the design of a subsidy mechanism and its impacts in strategic classiﬁcation
Conventional strategic classification model the interaction between a principal and agents who are
subject to the decision outcomes. While the former benefits from the classification accuracy, the
latter may have an incentive to game the classifier into making favorable but erroneous decisions.
Recognizing the potential issue, prior works focus on designing algorithms that are more robust to
such strategic maneuvering, see e.g., (Hardt et al.,[2016a; Milli et al., | 2019;|Hu et al., 2019} Briickner
& Scheffer, 2011} [Briickner et al., 2012; \Dong et al., 2018; |Braverman & Garg, [2020; |Chen et al.,
2020; Miller et al.| 2020). Equally important, however, is the possibility for a mechanism designer
to incentivize effort by the users who genuinely improve their true label; this benefits the users by
increasing utilities and the principal by preserving the algorithm performance at the same time.

Toward this end, we present a strategic classification problem augmented by a subsidy mechanism
(augmented strategic learning problem) modeled as a Stackelberg game between the principal, the
mechanism designer (which could be the principal itself or a third party) and individuals from differ-
ent demographic groups who are subject to the classifiers’ decisions (the agents). The principal and
the mechanism designer move in the first stage by publishing and committing to a binary classifier
and an incentive mechanism. The published classifier takes as input the agents’ observable features
and outputs decision outcomes that impact the agents’ utilities. The agents are (simultaneous) sec-
ond movers and best respond to the published decision rule and incentive mechanism. To capture the
agent’s ability to both game the decision rule and make real changes, we assume each agent has an
endowed pre-response attribute (endowed private information), that is causal (Miller et al.| (2020))
to a set of observable features as well as its true label, also referred to as its qualification state in
the context of the strategic learning problem. An agent can exert effort to improve this causal state,

'Our study on strategic regression has similar results and is covered in the appendix
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thereby improving its features and its underlying attributes, or choose to game the classifier by em-
ploying non-causal schemes to improve only its features without changing its underlying attributes,
or using a combination of them. Both choices of action, referred to as improvement and gaming, re-
spectively, come at a cost to the agent. The principal derives its utility from the prediction accuracy,
thus even a selfish principal may have an incentive to motivate the agents to choose improvements
over gaming to preserve the classifier’s performance. When the principal is also the mechanism
designer, one such incentive mechanism is for the principal to subsidize the agents’ improvement
costs, thereby making improvement more appealing compared to gaming.

The main contribution of our work is summarized as follows. We analyze the design of the
subsidy mechanism and characterize the Stackelberg equilibrium in the augmented strategic classi-
fication. The design of an optimal mechanism requires solving non-convex problems but we have
polynomial time and even constant time solutions in some realistic special cases. We also study
the case where the mechanism designer is a third party (e.g., a government) with social well-being
metrics (can be efficiency or fairness oriented) as its objective. The third party designs a mech-
anism that incentivizes agents’ improvement action and charges a tax from the principal for this
improvement service to ensure budget balance, while also making sure that incentive compatibility
and individual rationality constraints are satisfied for both the agents and the principal. In addition,
we study the impact of the mechanism designer’s objective and the corresponding mechanism on the
fairness and qualification status, when agents come from different demographic groups which differ
in endowment or action cost. We show with analytical and numerical results that the outcomes of
the augmented strategic learning with a fairness oriented third party are the most well-rounded since
it improves the fairness, the qualification status, and the robustness of the classifier.

2 MODEL FOR AUGMENTED STRATEGIC CLASSIFICATION

We model the augmented strategic classification problem as a single-round, two-stage Stackelberg
game, where the principal and the mechanism designer move first to design, publish, and commit to
a classifier f = l{wTa: > 7}, w > 0,7 > 0 combined with an incentive mechanism G; the agents
then best respond to both f and G in the second stage. Figure [I)illustrates the augmented strategic
classification problem where the principal is the mechanism designer.
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Figure 1: Augmented Strategic Classification

denotes an improvement action profile while t
a_ € R%’ is a gaming action profile, with
M, + M_ = M (with action indices ordered
such that Vi < M is an improvement action).

The agent’s action impacts its attribute as well as feature through a projection matrix P =
[Py, P_],P >0, where Py € RV*M+ (resp. P_ € RV>*M-) s the improvement (resp. gaming)
projection in the following sense. The action results in the agent having a post-response attribute
2’ =z + Pia, = x + Pa, where P = [P,,0] € RN*M  and a post-response observable fea-
ture (simply feature for brevity) 2 = £ + Pa = ¢ + Pyay + P_a_. Crucially, «’ is the agent’s
private information, whereas 2 is observable by the principal. This model captures the fact that im-
provement actions can improve an agent’s underlying attribute as well as observable feature, while
gaming actions only affect the outward feature without changing its underlying attribute. The pro-
jection matrix P, the available action dimensions, and the quality coefficients @ are assumed to be
public information. We discuss cases when these parameters are initially unknown in the appendix.

An agent with pre- (resp. post-) response attribute z (resp. z’) has a pre- (resp. post-) response
true label y (resp. y') which indicates the quality of an agent. y,y’ € {0, 1}, and we use a similar
setting as in|Hu et al.[(2019): Pr(y = 1) = 1(8T7z), Pr(y’ = 1) =1(8"x’), y > y, where we can
interpret [ : R +— [0, 1] as a likelihood function which is weakly increasing (I is a step-function in
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Hu et al.[(2019)). We assume that 3/ > y holds for every agent, with improvement actions weakly
improving the agent’s true label, and gaming actions leaving it unchanged.

Strategic Learning Problems. We will consider two different strategic learning systems/game
settings: (1) the conventional strategic (CS) problem where the agents and the principal play the
standard Stackelberg game without any added incentive mechanism, both being fully strategic, and
(2) the augmented strategic (AS) problem, where the agents and the principal play the Stackelberg
game with a subsidy mechanism.

Utilities and Optimal Strategies in CS Learning. In a CS learning problem, it is assumed that
an agent has the following utility function uc(z,a) = f(xz + Pa) — h(a), where the agent ben-
efits from the decision outcome f(z) and incurs a cost of h(a) := ¢’a. Denote by a},(z) =
arg max, uc(z,a) the agent’s CS best response, with ties broken in favor of its qualification status
67z'. In the same problem, denote y/, as the CS post-response label. The principal’s utility is the
classification accuracy Uc(f) = [, Pr(f(z + Pa}(z)) = y.)p(z)dz.

Principal as Mechanism Designer in Augmented Strategic Learning. We focus on discount
mechanisms that are based on providing a discount on actions, where the mechanism provider
has the ability to lower the cost of agents’ actions, e.g., making the cost of getting tutoring or
exam preparation cheaper during the school admission process. We use G to denote the dis-
count mechanism where the designer chooses a cost rate discount value on each action dimension
Ne = (Aei)M,, Ne; < ¢, and set a discount amount range [c, . Then with G, the agent’s util-
ity function in the augmented strategic learning becomes u 4(z,a) = f(z + Pa) — h(a), where
ha(a) = h(a) — Acta - 1{AcTa € [c,¢|}. With G, a%(z) := argmax, ua(z,a) denotes the
agent’s augmented best response or AS best response, with ties broken in favor of maximizing
0"z’ unless otherwise suggested by the mechanism designer. The designer incurs a subsidy cost
H(G) = [, AcTary(z) - 1{Ac"a% () € [¢, ] }p(x)dz. Denote by iy the AS post-response label.
The AS utility of the principal is then: Ua(f) = [, Pr(f(z + Pa’(z)) = v, )p(x)de — H(G).
Third Party Mechanism in Augmented Strategic Learning. The subsidy cost is the same as
above, and the third party charges the principal a tax T (G) for improved decision performance. The
principal’s AS utility becomes U4(f) = [, Pr(f(z+Pa%(z)) = vy )p(x)dz—T(G). Figureil-
lustrates the three party AS classification problem. In designing GG, we will consider three commonly
studied properties in the mechanism design literature: Individual rationality (IR): The participants
are better off in the mechanism than opting out. Incentive compatibility (IC): The participants act
in self-interest. Budget balance (BB): 7(G) > H(G). We will cover the third party objective in
Section 4]

3 OPTIMAL MECHANISM IN AUGMENTED STRATEGIC CLASSIFICATION

In this section, we consider agents from a single demo- "

graphic group, with the principal as the mechanism de- Third Party

signer. Please see the appendix for pictorial interpreta- R if — ’y,A TaxT(6),
tions of our results. When designing an incentive mech-  w, > u | | ¢ T@G) 2 HG)  fromG UA'RZ'fUr
anism, we consider the classifier f as given. Before . ’

analyzing the optimal mechanism design, we define the Agents M D,adiion }
subsidy surplus, S(f,G) == [, [Pr(f(:l:—FPajl(a:)) = b LR e
y4) = Pr(f(z+Pag(z)) = y¢)|p(z)de— H(G). The
integral part in S(f, G) is the benefit gain of the deci-
sion maker and the value in the square bracket is the
individual subsidy benefit. The decision maker’s problem is equivalent to maximizing S(f, G) un-
der IC and IR.

Theorem 3.1. For general f(z) = 1{w”z > 7}, p, and | functions, finding the optimal IC and IR
discount mechanism requires solving non-convex optimization problems and thus is NP-hard.

Figure 2: Three-party AS learning.

While finding the optimal mechanism under IC and IR constraints is NP-hard, we can develop
polynomial time solutions that find IC, IR and S(f,G) > 0 when [ is convex (see Algorithm [E|in
appendix). Moreover, we have the following result for an important special case w = 6.

Theorem 3.2. I[fw = 6 in f, f incentivizes gaming, and | is convex on [0, 7], then we have a
constant time algorithm that finds a G that is IC, IR, and S(f,G) > 0, which is also the optimal
mechanism under certain conditions (please see appendix for algorithm and condition).
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The convexity requirement of [ on a low range is satisfied in real-world datasets such as the FICO
credit score dataset, in which the likelihood function [ frequently has an S-shape. w = 6 holds in
the optimal CS classifier when it is impossible to incentivize improvement with f, as shown below.

Theorem 3.3. Let k; denote the substitutability of action dimension i (Kleinberg & Raghavan
(2020); Jin et al.| (2021)). Formally, r; = minaeRMﬂ‘Zo CCT—;‘, s.t. Pa —p; > 0, where p; is
the i-th column of P. If k; < 1,Yi < M, then is no f that can incentivize improvement (a}.(x) is
always gaming), and the decision maker’s CS optimal strategy f¢, satisfies w = 6.

4 DEMOGRAPHIC GROUPS, SOCIAL WELL-BEING

Consider now the case where agents come from two demographic groups distinguished by a sensitive
attribute d € {1,2} (e.g., gender, race), which is not a part of the NV skill-related attributes (not in
x) and is never influenced by an agent’s action a. Suppose the decision rule is not allowed to use
the sensitive attribute as input but that it can be used to design group specific subsidies, where the
agents voluntarily reveal their sensitive attributes.

Without loss of generality, we will refer to group 1 as the advantaged group and 2 as the disadvan-
taged group, and consider group 2 to have the same distribution on z but disadvantaged in cosﬂ ie.,
) (a) > (Y (a),Va # 0, where h(?) denotes the cost function for group d.

Social Well-being Metrics. We will use the equilibrium qualification status E[y;],t € {C, A} as an
efficiency oriented social well-being metric. We also introduce fairness oriented well-being metrics.

Quality gain measures the increase in agents’ expected qualification status (positive rate) in the
response phase AQ¢ := E[Y/|D = d| — E[Y|D = d|;Vd € {1,2},Vt € {A, C}. The quality gain
gap 'th (f,G) = AQEU — AQEQ) measures the group-wise improvement difference.

We also consider two commonly used fairness criteria in classification, Equal Opportunity (EO)
(equalized true positive rates) Hardt et al.[{(2016b) and Demographic Parity (DP) (equalized positive
decision rates), and define their respective group differences:

VEO(f,G) = Pr(f(z) =1|Y/ =1,D=1) — Pr(f(z;) = 1|Y{ = 1,D = 2),t € {A,C};
WP (f,G) = Pr(f(z;) =1|D = 1) — Pr(f(z;) = 1|D = 2).

An efficiency oriented third party maximizes the efficiency oriented metric and a fairness oriented
third party minimizes a linear combination of the three fairness gaps above.

Theorem 4.1. Denote AS-fair (resp. AS-eff), and AS-dm as the equilibrium with a fairness (resp.
efficiency) oriented third party, and the principal. 1. The DP gap in weakly ascending order is: AS-
fair, CS, AS-dm, AS-eff; 2. The EO gap (or quality gain gap) in weakly ascending order is: AS-fair,
CS, AS-dm, AS-eff; 3. The equilibrium social qualification status in weakly descending order is:
AS-eff, AS-dm, CS. (Please see the appendix for conditions that make the ranking strict)

Figure |3|illustrates our numerical results on the FICO dataset Hardt et al. (2016b)E| It shows that
while AS-eff reaches the highest efficiency metric, the AS-fair is the best in fairness. Moreover, we
note that AS-fair achieves a higher efficiency metric than CS and AS-dm in this experiment.
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Figure 3: AS Equilibrium Outcomes in FICO with Cost Disadvantages

2Please see the appendix for another case where group 2 is disadvantaged in attribute distribution.
3Please see appendix for experiment settings.
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A SUPPLEMENTARY MATERIALS FOR SECTION [2]

Remark 1. The projection matrix P, the available action dimensions, and the quality coefficients
0 are assumed to be public information for the remainder of the paper. We discuss in the appendix
when these parameters are initially unknown for the principal. Parameter learning requires multi-
round online learning |Shavit et al.|(2020); |Harris et al.|(2021), which is different from the model
settings in this paper. However, we show that our incentive mechanisms help with parameter learn-
ing in the multi-round online strategic learning models.

A.1 DISCUSSION ON REMARK/[I]

In this part, we discuss the case where game parameters like § and P are unknown and the principal
need to be learn them. Unlike the single round, two stage game in the main article, the learning
process requires online learning with multiple rounds, each containing two stages.

We note that the quality coefficients § can be learned in one round by setting f = 0 and then we
have (2,y’) = (x,y), and running any suitable learning algorithm can get an estimate of 6.

However, P can not always be learned in the conventional learning problem. We can use an example
can from the impossibility conditions in Theorem [3.3] given those conditions, only the columns
whose index has substitutability 1 can be learned, the other columns are always unknown. Below
we show how the discount mechanism help with learning the the projection matrix P.

In the regression problem with L1 cost, we can use the following procedures to learn the projection
matrices,
* Choose f such that w > 0 (without loss of generality, assume that w > 0 = PTw > 0,

otherwise some action dimensions are meaningless)

» For each time step ¢t = 1,..., M, get a sufficiently large sample of agents with their ob-
servable features 2z

e Att=0,G4 =0, letz :E[Z]

* Att=1,..., M, let G4 induce the best response along action dimension ¢ by lowering the
cost to ¢, and let Z; = E[z]

» Compute v; = (Z; — 20)¢/B, which is an estimate of Pe; = p, i.e., the ¢-th column of

Discount mechanisms can enable best responses to in action dimensions that are impossible to be
incentivized with the decision rule itself, and this is true for both classification and regression, both
L1 cost and other types of costs like L2 or squared.

A.2 THE LIMITED STRATEGIC (LS) LEARNING PROBLEM

The limited strategic (LS) problem where the agents are fully strategic but the principal does not
anticipate the agents’ strategic behavior and applies the optimal non-strategic decision rule, e.g.,
f(2) = 67z in regression as a sub-optimal option

Lemma A.1. The LS optimal decision rule is f;(z) = 1{07z > 1.}, 71, = argmin, I(T) > 0.5.

Proof. This is because it is optimal for the principal to accept every agent with [(87x) > 0.5, since
rejecting this agent results in a decrease in the expected individual prediction outcome 1 —1(67z) <
1(#7x). Similarly, the principal wants to reject every agent with [(87z) < 0.5.

A.3 OTHER COST FUNCTIONS

“The agents perform the same as in CS problems. The LS problem is reasonable since the CS problem is in
general NP-hard for the principal [Klemberg & Raghavan| (2020).
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We will use the L2 cost h(a) = |[|a||z for demonstration o
purpose, and we note that higher orders of cost functions
h(a) = i||a||3 are very similar in classification but different
in regression. In regression, higher order costs are convex and
the marginal cost grows, and thus there is no need to be a bud-
get constraint B > h(a), other than that, h(a) = ||al|2 is very

representative.

For all other cost functions, we can equivalently have a set of
“equal cost contour” i.e., {a|h(a) = C} for some constant C : :
is a contour. Most cost functions used in economic and com- ¢ ¥
puter science literature have contours with different sizes but

a constant “shape” (the surface of norm balls, since the cost Figure 4: An illustration of a CS
functions are norm based), like the L1 cost, L2 cost, tilted best response in classification with
L2 cost h(a) = VaTCa and squared cost h(a) = %|lal[3. L2 cost, where the blue dashed
The constant shape of contours made it possible to have a con- curve (quarter circle) is an equal

ap

cise (closed-form in most cases) representation of the best re- cost contour, P = [1,1], w =

sponses’ directional and magnitude properties. (1,1), ay is improvement and ay is
. aming.

For example, when h(a) = ||a||2, the best responses satisfy & &

plai, PTw) = 1 where p(vy,v3) = m is the cosine
similarity. We still have properties in Lemma and in classification and regression, the best
responses are

r—wlz . B T

*

aH(x) = ——P'w, a-(xr)= ——P'w
@) =gt v %@ = LT

and we can similarly write out the expressions of the AS best responses for other cost functions.

For L2 cost h(a) = ||a||2, we can think of discounts with minimum effective discount value as
giving certain action directions a fixed discount rate or incentivizing agents to play a different action
and pay the cost differences.

Therefore, the implementer will try to incentivize some of the agents to take an AS best response that
also reach the boundary, this can be done by making the discount amount equal the cost difference
between the AS and the CS/LS best response. The implementer wants to maximize the subsidy
surplus on a given agent, which is the quality gain /(a) — I(a(z)) minus the subsidy cost ||a||> —
lla& (z)]|2 and thus a* () is the solution to the optimization problem

minimize, |al|2 — (87 (z + Pa)) (1)

subject to w' Pa =7 —w’z

However, the above problem is in general not convex and can be NP hard to find the optimal solution.
But the below assumption guarantees a solution.

Assumption 1. w = 0, and the implementer limit the AS best response to be gaming free, i.e.,
@’y (x)]; = 1{j < Mi} < Paj(x) = Pa(2),

Under Assumption the problem becomes convex since /(87 (z 4+ Pa)) = I(7) is constant
minimize, ||al|2 2)
subjectto 87 Pa =1 — 0"z
and the solution (AS best response to incentivize) is
PTo

* _ _pT
al(x)=(1—-6 :1:)7”]5”9”%

3)

We can then similarly define the individual subsidy surplus in the L2 case and find sufficient condi-
tions that guarantees an IC, IR and BB mechanism G # 0 or even find the optimal solutions with
the same assumptions made in the Theorems and
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One interesting difference in the L2 cost case is that the decision rule can incentivize partial im-
provement, which can also be called partial gaming, which means 87 Pa > 7 Pa > 0, and the cor-
responding theorems in L1 case still applies when f incentivizes pure gaming 87 Pa > 67 Pa = 0.
An example of pure gaming happens when for every improvement action j, there is a corresponding
gaming action k with the an exaggerated effect p, = o;p;, o; > 1, which can model problems like
multi-subject exams where an agent has an improvement and gaming action for each of the subject
and cheating is always more cost efficient than working hard without an incentivize mechanism.

A.4 AN ALTERNATIVE INCENTIVE MECHANISM

An alternative mechanism to consider, the transfer mechanisms is based on monetary transfer, where
the mechanism designer provides reimbursement or bonus payment when the agent meets certain
feature criteria, e.g., rewards for high scores. We use G; to denote the transfer mechanism, where
the designer chooses a bonus amount b(z), b : RY +— R, effectively revising the agent’s utility to

ua(z,a) = f(z + Pa) — h(a) + b(z + Pa). 4)

In transfer mechanisms, knowing the actual & seems to help the designer reduce the subsidy cost

on agents with high endowment and low improvement, but we will show below that this extended
version with bonus amount b(Z, z) is equivalent as the bonus b(z) that only uses features as input,

where I is the reported pre-response attribute. This is because b(&, z) either can not incentivize
agents to truthfully report £ = z, or it can not generate more benefit for the mechanism designer.

With the alternative version of the monetary transfer mechanism, the agent’s utility now becomes
Ga(x,a,Gy) = f(x + Pa) — h(a) + max b(&, z + Pa),
T
and we can find the corresponding a* (), and only if

T € argmax b(Z,x + Pa’y(z)),
x
truth-reporting is incentivized. If truth reporting is not incentivized, b(, z) and b(z) = maxz b(&, z)
are equivalent for both the agents and the mechanism designer. Meanwhile, for Vz; # x5, truth
telling requires either
1 + Pa’y(x1) # x2 + Pa’y(z2),
indicating that backward induction from z + Pa’ (x) to z is achievable, or

z1 + Pa’(z1) = z2 + Pa’(z2), and 1,2, € argmax b(Z,z + Pa* (z)).
F

In either case, b(z2) is sufficient.

However, the computational complexity is very high in the backward induction step for a general
b(z) bonus function. Recall that the AS utility of an agent is

ua(x,a) = f(x + Pa) — h(a) + b(z + Pa),
and thus computing @’ (x) = arg max, u4(z,a) is non-convex for a non-concave b(r) bonus func-
tion.

On one hand, we can’t guarantee concave b(r) is the optimal solution. On the other hand, for a
concave b(z), the computation of a’ () = argmax, us(z,a) is convex and but the individual
subsidy surplus

s(@. f.Gy) = 107 (2 + Pay () — 167 (x + Pag(2))) — b(z + Paj(z))
on the agents are not concave unless [ is convex (we are supposing £ € M ( f) here, otherwise more
non-convexity is introduced). Moreover, the overall objective depends on the integration on a subset
of ¥ C X

S(f.Gy) = /X s(z. f,Go)ple)dz,

and a general probability density function p, and the convexity of set X can make the mechanism
designer’s objective non-convex even if [ is convex.

We also note that when changing the value b(z) for a certain z, the AS best response for all agents
with pre-response attribute & in the cone  — z < 0 (element wise non-positive) might change, and
this also makes the analysis hard.
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Figure 5: An illustration of a CS best response in classifica- F1gure 6: An illustration of
tion, where P = [1,1], w = 1, PTw = (1,1). Solid blue the manipulation margin in

classification, given by the
shaded region; every agent in-
side can reach the boundary
with an action cost no more
than 1.

is the decision boundary. In (a) blue dashed line is an equal
cost contour; ce < c1, thus gaming is cheaper than improving
leading to best response shown in red. (b) illustrates tie break-
ing in best responses, where c; = ¢, with equal cost contour
shown in yellow dashed line.

B SUPPLEMENTARY MATERIALS FOR SECTION 3]

This part considers agents from a single demographic group. Throughout our analysis, we will
provide pictorial interpretations of our results, using an example with 2 action dimensions: a; is an
improvement action and ao a gaming action.

We begin with some preliminaries. The next two Lemmas characterize the magnitude and direction
of the agents’ best responses a; (z) (t € {C, A}) in the conventional and augmented strategic games.
Lemma B.1. For CS and AS classification, w” (x + Paj(z)) = 7 < aj(z) # 0, Vt.

Proof. For Va such that w” (z + Pa) < 7, f(z) = 0 and thus it is dominated by 0 due to h(a) >
h(0) = 0 and ha(a) > ha(0) = 0. On the other hand, for Va such that w” (z + a*) > 7, there
exists an « € (0, 1) such that w” (z + aPa) = 7. Both a and aa guarantees f(z) = 1, and thus a
is dominated by ca due to h(a) > h(aa) and hy(a) > ha(aa) ifa # 0. O

Lemma describes the magnitude of the best response in CS and AS classification: it is such
that the feature 2z reaches the decision boundary but not beyond, as going beyond the boundary only
increases the cost without affecting the decision. This is illustrated by the red arrow in Figure [5a]

Lemma B.2. For CS and AS classification,
(at(z)); > 0, ifi € {argmax(PTw);/c;}; (a;(z)); =0, ow., Vaz.
J

(@4(@)); > 0, ifi € {argmax(PTw);/(c; — Ay} (@4(@))i =0, 0w, Vo (3)

- * S (PTw)y, : *
Proof. Assume by contradiction a} > 0, j # i¢c = argmax; o By LemmaB.1| as a #0
s« pT, .
we have w” (z + Pa*) = 7. Denote @ = a* — aje; + %
ic
base vector of RM. It is easy to see that w” (z + Pa) = 7 and thus f(2) = 1, while h(a) < h(a*),
indicating that a achieves a higher utility than a*, contradicting the optimality of a*. The proof for

AS classification is similar. O

ei., where e; is the ¢-th orthonormal

Lemma [B.2] describes the directional properties of the best response: the agent will invest in the
action dimension(s) with the highest return on investment (PTw);/c; (in CS) or (PTw);/(c; —
Ac;) (in AS). Without loss of generality, we assume that the optimal CS action dimension ic :=
arg max; (PTw);/c; is unique. This property is also shown in Figure where ic = 2 is the action
with the highest return on investment.

We note that there may be multiple actions that are tied in their return on investment. In such
cases, we assume the agent follows the algorithm designer’s recommendation if any, and otherwise
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chooses the one that leads to the maximum improvement (i.e., the one maximizing 67 Pa). Figure
[5b]explains this tie breaking: here ¢; = ¢, and every point on the yellow contour has equal cost and
benefit to the agent, making the agent indifferent between a(!),a(?), a(®. We take a(®, the largest
improvement, to be the agent’s choice.

Using Lemma[B.T|and [B.2] we have

al(x) Tve _wae if £ € M(f) ai(x)=0, o (6)
= ics 1 ) =0, o.w,,
C (PTw)qic c C
h M L (‘rf'wTa:)cic
whnere (f) =9 W
the manipulation margin has non-zero best response to improve their decision outcome to 1. This is
illustrated in Figure[6]

€ (0, 1]} denotes the manipulation margin of f: every agent in

In classification, if ¢ < M, we say the decision rule incentivizes improvement, otherwise we say
the decision rule incentivizes gaming.

Lemma B.3. To induce an agent to take an AS best response with non-zero investment in action
dimensionj < M, i.e., [a%(x)]; > 0, the discount value /\c; should satisfy (PTw);/(c;—Ac;) >

. PTw);
(PTw);./(ci), ie., ANcj > cj — (SMTM))-

Cine
ic C

Based on Lemma [B.3] we denote the minimum effective discount value as

‘. (PTw);
ACj = Cj — mcic.

)

Intuitively, Lemma states that to induce a best response in action j, the discount has to make j
the action with the highest (potentially tied) return on investment. Figure [7alillustrates an example
of how the discount mechanism with minimum effective discount value works. By choosing Ac¢; =
Aci, the two actions have the same return on investment; the agents choose a’ (z), the maximum
improvement action, in this case. In contrast, the CS action af () is a gaming action.

Below we present the proof of Theorem [3.3]

Proof. The proofs of the claims

1. If k; = 1, then there exists aw in f that can incentivize action dimension 7, and the w can
be found in polynomial time;

2. if k; < 1, meaning there always are linear combinations of gaming actions weakly domi-
nate every action j, then there is no f that can incentivize best response on action j.

are covered in |Kleinberg & Raghavan|(2020); Jin et al.[(2021). Intuitively, if x; < 1,Vj < M, the
corresponding a is the combination that strictly dominates e; for any f and thus there is no f that
can incentivize improvement.

We will proceed to show the principal’s CS optimal strategy satisfy w = . The main idea is that
when f always incentivizes gaming, then the CS decision outcomes with fo(2) = 1{wkz > 7¢}
always have an equivalent LS decision outcomes with f1,(z) = 1{w’ 2z > 7.}, where the wc = wy,,

and 7¢, 71, satisfy
PTw),
TL:min{O,Tc—( ’LU)k}
Ck
In other words, we can show that Vz, f1 () = fc(z + Pa*), and thus is equivalent for the principal
to find an optimal f, which guarantees w, = 6 as the Lemma[A.1]|suggests. O

Recall that Theorem [3.1] states that finding the optimal mechanism requires solving non-convex
optimization problem and thus is NP-hard. Below we present the proof.

10
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Proof. We will first show the problem is non-convex when discount is placed on multiple actions,
then show even the discount is only on one action, the problem is still non-convex.

When the discount is on multiple actions, providing the optimal tie breaking strategy for an agent
with & requires solving

maximize, (87 (z + Pa)) — Ac’a,
which is non-convex for a general [ function. This is for individual subsidy surplus for a fixed
Ae, and it has to be integrated over X’ to compute the overall subsidy surplus S(f, G). So finding

the optimal mechanism will only have higher computational complexity when the principal has to
optimize over Age, ¢, ¢, and take into account the influence of p(z).

When the discount is only on one action, from Lemma|B.3] the mechanism designer need to choose
Ac such that
(PTw);
RSlr¥ By
(P Tw)ic e

for some improvement action dimension j < M that it wants to incentivize the agents.

ACJ' 2 AC; =Cj —

Then for the principal, maximizing its AS utility is equivalent as maximizing the subsidy surplus,
so the principal solves

maximize; Ac; ez / [Pr(f(z + Pa*(x)) = y) — 1{AcTa’ (x) € [c,d]}|p(x)dx
X
subject to Ac € [Ac”,¢;),j < My

where the problem can be non-convex and not monotone for general p and [. Specifically, when j
has the highest return of investment after the discount, the backward induction that anticipates the
agent’s AS best response is,

r—wlx .o Acj(t—wTx) —
e;, if — € le, ¢,
ayw) = e e Cled

T-WwW T
BT,y € O0.W.
(PT'w)ic (ZeR]

This indicates that agents with z in a belt shape subset of X’ will be incentivized to improve, but the
overall subsidy surplus is in general not convex, not concave and not monotone in either the upper
bound (determined by f and ¢) or the lower bound (determined by f and c) of the belt even when
the other is fixed. Moreover, the minimum effective discount value Ac; is not always the optimal
solution, adding more complexity to the problem. This is because sometimes the principal wants to
put more discount on the action dimension and incentivize some agents outside of the manipulation
margin to improve and accept them rather than reject them. For example, if 80 percent agent has
attribute that makes their likelihood 0.49, the minimum effective discount value still makes them
rejected and take O AS best response, but a slightly higher discount can incentivize them all to
improve to the threshold value, say 0.7, the 0.7 — (1 — 0.49) - 0.8 = 0.152 amount of improvement
may largely outweigh the extra subsidy cost.

Overall speaking, the difference between w and € in f, the global properties of p, [ and their local
properties influenced by 7 all makes the problem hard to solve. O

Theorem B.4. Algorithm I| runs in polynomial time, and if | is convex on [0, maxg.,,re—r 1(Z)],
then any G # 0 returned by Algorithm|[I|is IC, IR, and satisfies S(f,G) > 0.

Proof. We will show that any G # 0 returned by Algorithm[I]is IC, IR and satisfies S(f, G) > 0.

The IC part follows that the participants act in self-interest. Also, as previously discussed, the
(PTw);
N (PTw)'ic

weakly better off in the AS game than the CS game (given the same f).

minimum effective discounted value Ac; = Acj = ¢ ¢;, makes sure the agents are

We note that for all f that incentivizes gaming, the principal would prefer w = 6 and we can use
Theorem [3.2]to find G, so below we have ic < M.

The basic logic of ensuring S(f,G) > 0 is that the algorithm finds a specific agent that is in-
centivized, and if this specific agent has a non-negative individual subsidy surplus, it is sufficient

11
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that all the other incentivized agents also have non-negative individual subsidy surplus and thus
S(f,G) > 0.

In Algorithm [T} the designer finds (a convex problem and easy to solve)

= arg min 07z,
zwle=7—6;(PTw);

which is the attribute of the specific agent. From the upper bound set on ¢; in the algorithm, we
assume the specific agent is in M(f), and then uses

s=1y —0;0c; =107 (@ + 5;Pe;)) — 16" (z + bi, Pei,)) — 6,5,

as a benchmark, where §; is the J in the algorithm and 6;, = ((PPTTTHBZCSJ-. dje; and ;. e;, help the
T

agent achieve the same w* z, ¢ = 0,¢ = §;Ac; here.

Then s is the specific agent’s individual subsidy surplus, i.e.,

s(z. £,G) = 167 (z + Pay () - 107 (& + Pag(2))) - 1{AC ) () € [e7]} = s

We start with agents with CS best response aj.(z) = J;€i., i.e., w ' = wlz. For them, the AS
best response is a*, (x) = J,e;, the individual subsidy surplus is then

s(x, f,G) = 18" (x + 6, Pe;)) — 10" (z + 5. Peic)) — ;5
since (1) 8T P(3;e; — d;.e;..) is constant, (2) 87 > @7z and (3) I is convex on this range, we have
s(z, f,G) > s> 0.

For agents with “higher endowment” wTzx > wTlz, ie., with CS best response a*c(.z') = Qi €ig,
Qie < iy, we denote a; = a; (PTw);. /(PTw);, then the (sub-optimal) AS best response is
a’ (z) = aje;, and the individual subsidy surplus is

S(iII, 1 G) = l(OT(x + ajpej)) - Z(0T(:1: + aicff’eic)) - aicE/dic

(cj;,ic 187 (z + 6;Pe;) — 18" (z + bic Peic) — 7

o
> s >0,
Sic

>

where the second inequality comes from the convexity of [.

For agents with “lower endowment” i.e., with CS best response ag(z) = Bi €., Bic < dic, the
mechanism designer suggest that they break tie choosing a* () = §;.e;. as the AS best response
and thus the individual subsidy surplus is 0. For 8; = 8. (PTw);. /(PTw);, we note that a*, (z) =
fB;e; is a dominated strategy since Ac’'a’ (z) > ©. O

From Algorithm[I|we see that the principal prefers subsidizing agents that are “closer” to the bound-
ary when [ is convex on [0, maxg.,,74— {(x)]. This is because when [ is convex, the subsidy benefit
becomes concave while the subsidy cost is linear in the “distance to the boundary”; thus the agents
close enough to the boundary can have positive individual subsidy surplus; Figure [§] provides an
illustration of this.

The convexity requirement of [ on a low range is satisfied in real-world datasets such as the FICO
credit score dataset, in which the likelihood function [ frequently has an S-shape (see Appendix [E).
We discuss the case of other likelihood function types (including concave) in the appendix.

Also note that in Algorithm|I|the mechanism designer places discount on only one dimension. This
is because even though it technically can set the discount A¢; > 0 for multiple improvement actions,
ultimately the agent either finds the dimension with the highest return on investment or breaks ties
in favor of the largest improvementﬂ

>When placing discounts on multiple actions, finding the optimal tie-breaking rule is a non-convex problem.

12
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The optimal mechanism can be found more ef-
ficiently for the special case when w = 6 in f
(this happens, e.g., in the optimal LS strategy as
shown in Lemma(A.T]in the appendix, or in the
optimal CS strategy when x; < 1,Vi < My
in Theorem [3.3). This can be done in a fixed

ALGORITHM 1: Find a G # 0 thatis IC, IR

and S(f, G) > 0 for Classification
x| < argming,, r,_, 07x;

ic + argmax;(PTw);/c;;
forj=1: M, do

number of steps (faster than polynomial) using Ac+0; ¢4 0; 14+ 0
Algorithm (PTw),;
Bel . fined . f Th k) ch ¢ — (pT.w)lj Cics
elow is a refined version of Theorem Define function
.5. =0i ] jvi . _ S Pw);
Theorem B.S. If w 0 in f, f incentivizes a(d) := de; 5(PTw)ic €

gaming, and 1 is convex on [0, 7], then Algo-
rithm ) finds a G that is IC, IR, and satisfies
S(f,G) > 0. In addition, algorithm2|finds the

optimal G if I(1) = l(r;) < (rz;)0c, , where

P7o).,
Ty = minge () 0T x.

Proof. When w = 0, the mechanism designer
is indifferent about AS best responses along any
improvement action dimension.

The mechanism designer find the “cheapest to
incentivize” target action dimension

ia = argmax(P70);/c; < ia = argmin

1+(0) == 10Tz) — 1(0Tz1 —a(6));
0% «— argmax;y s.t. 14 (0) > 6Acj;
if 6* = 0 then

| Go back to for loop
end
¢« min{0*,1/(c; — Acj)} - Ny
Return (Ae, 0,7¢)

end
Return (0,0, 0)

ALGORITHM 2: A G that is IC, IR and
S(f,G) > 0 for Classification when w = 6

o SpPEm s (PT6);/cj:

(PT0):,

5 ACiA — CiA - (PTo)ic Cic;

J<My J i
Define functions (rer)
?I;cios)et Ae so that Ac;, > Aci, = ciy — s1(r):=1U1)—U(r)— 7(13?79)::‘;
; ‘ T—r)Ac;
PTa). . Cic s2(r) 1= 1(r) +1(r) — 1 = gy

The choice of ¢ depends on the individual sub-
sidy surplus, which is the quality improvement
of an incentivized agent minus the subsidy cost,
denote 7, = Tz, then[f]

r<—argmin, s.t. s1(r) > 0;
if {(r) < 0.5 then
| r < argmin, s.t.sy(r) > 0;
end
c=(r—1r)0ec;, /(PTO);,;

S £, Ga) = () —L(ra) 1 € M(F)}—[1—t(RepHT R Py (T~ T ciy

®)
which is because when agents break tie choos-
ing the action with the largest improvement, we
have

(F70)iy

0(x + Pa’(z)) =T

‘When the minimum effective discount value is chosen, and the condition

(r— ﬂf)Acf Ci Ci
) —U(ry) < ~——mti4 = (7 - o (PTw
(7—) (tf) - (PTO)iA <T ﬂf) (PT’LU)iA (PTw)ic ©
holds, all incentivized agents satisfy € M(f) and s(rz, f,Ga) = U(7) — I(rg) — %’
iA

which is concave in r, Vr < 7 since [ is convex on [0, 7]. A rational principal will make sure that an
agent with r, > 0.5isin M(f), and r;, < 0.5 is not. And similar to the case in Theorem agents
that fully spends ¢ but still need (a4 );. > 0 are suggested to stick with their CS best responses.

Sif ¢ € M(f), incentivizing this agent will result in the same decision outcome and an improvement
equilibrium qualification status and thus the subsidy benefit is I(7) — I(rz); if ¢ M(f), subsidizing this
agent will change the decision outcome from O to 1, and the subsidy benefit is [(7) — [1 — I(rz)]. When
applying the minimum effective discount value, the agent’s equilibrium action cost is the same in AS and CS
outcomes, and thus € M (f) are incentivized to improve.

13
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Function value

Individual subsidy cost
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(a) Discount Mechanism (b) Designer’s Suggestion Figure 8: A simplified illustration

of the individual subsidy benefit
and cost in the mechanism. Region
1/2 corresponds to agents with sub-
sidy surplus/deficit. ~ The third
party incentivize region 2 agents

Figure 7: An illustration of the discount mechanism in classi-
fication, P = [1,1],w = 1, PTw = (1,1),ca < ¢y, the red
dashed line is the discounted equal cost contour with a min-
imum effective discount. In Figure [7b] the € is of a smaller
value, and the equal cost contour has a different shape. The ; ol well-bei .

incipal ts the agents choose a%,(x) instead of a®) in or social well-being objectives. 7
principal Sugges © ag C N represents the lower boundary of
tie breaking in Algorlthm and when [ is convex. M(f)

The principal chooses ¢ by

¢=(r—r)Ac,/(P"0);,, wherer = argmin s.t. s(r, f,G) > 0,

I
intuitively, it incentivizes every agent with non-negative individual subsidy surplus.

Here we highlight some of the key reasons why the mechanism is still IC, IR and satisfies S(f, G)
if the condition in equation [9]does not hold.

In fact, when w = 6 in f, we can assume that a rational principal makes sure if ¢ M(f), then
l(rg) < 0.5 < 1 —1(rg) > l(rg). As aresult, we know that

S(r, £.G) = I(r) — 1(r) - <(;T;)A > s(r. .G,
is concave in r and
s £.G) = 1(r) +10r) — 1~ T8 5 )

(P76);

is increasing in r, Vr s.t. [(r) < 0.5. Therefore, if the condition in equation@]does not hold, we have
I(r) < 0.5, where r = argmin, s.t. s(r, f,G) > 0 we can also conclude that rzin|r, 7] satisfies
s(rg, f, G) > 0, i.e., every agent incentivized has non-negative individual subsidy surplus. [

(T—rp)Ac]

i

Intuitively, the condition () — I(r;) < W indicates the subsidy cost is larger than the

subsidy gain for an agent on the “far side” boundary of M(f) in equation @ This holds when
improvement costs are much larger than gaming costs, so that the discount payment is higher than
the resulting benefit from the agent’s improvement. Such a condition is needed to enable the efficient
calculation of the optimal mechanism for the following reason. If the condition does not hold, the
mechanism can further increase the cost discount rate on the actions and let agents with a pre-
response attribute such that 7z < r ¢ to also take improvement actions. However, this would
again make the problem hard for the principal, since it has to jointly optimize Ac; and €, and such
optimization is non-convex.

We note that the s; and s, functions in Algorithm [2] capture the following properties of individual
subsidy surplus: for agents in M(f), these agents’ qualification status improvement equals the
individual subsidy benefit {(87z',) — 1(§Tz,), but for agents not in M ( f), the individual subsidy
benefit is not the qualification status improvement, but instead (87 z’,) — [1 — (87 z},)] since these
agents are supposed to receive 0 decision outcomes (rejections) in the CS problem. The green curve
in Figure [§|also illustrates the above.

14
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C AUGMENTED STRATEGIC REGRESSION

An agent with pre- (resp. post-) response attribute & (resp. ') has a pre- (resp. post-) response frue
label y (resp. y") which indicates the quality of an agent. For strategic regression, we use the same
setting as in|Shavit et al.| (2020):

y=q(@) =0Tz +n, y =q@) =0"2 +1, (10)

where 8 > 0 is the quality coefficient vector, and 7 is a subgaussian noise with 0 mean and variance
g.

The principal’s utility is USY (f) = Sy Ey[ = (f(x + Pal(z)) — y’c)2]p(:1:)da:. Here the
principal aims to minimize the mean squared error in regression, respectively. We will use
f& = argmax; Uc(f) to denote the principal’s optimal conventional strategic decision rule.

For CS and AS regression, the best response directions are the same as CS and AS classification, as
given in Lemma [B.2]

However, different from the strategic classification problem, the agents can have best responses with
infinite magnitude. For example, if (PTw);, > ¢;, the agent will invest an infinite amount in
action ¢¢. To handle this issue, we assume that the agents’ actions are bounded by an action budget
h(a) < B in CS (and LS) regression, and h 4 (a) < B in AS regression[]

Given these bounds on the agent’s budgets, the agents’ best responses can be characterized as
follows: if (PTw);. > c¢;.. then af(z) = L-e;.; otherwise af(z) = 0. Similarly, let
i,

ia = argmax;(PTw);/(c; — Acy), if (PTw);, > ¢, — Aci,. Then, the AS-discount best
: — B . : —

response is @’ (z) = o Rer Gial otherwise a’ (z) = 0.

An interesting difference to highlight is that the agents’ best responses in strategic classification

depend on both the pre-response attributes of the agents and the decision rule, whereas in strategic
regression, the best responses are the same for all agents and only depend on the decision rule.

In this strategic regression setting, we will say f incentivizes 0 responses if al,(x) = 0. Otherwise,
if ic < My (resp. ic > M), we say f incentivizes improvement (resp. gaming).

If f incentivizes non-zero responses (improvement or gaming), the cost discount rates will again
follow Lemma |B.3| with the minimum effective discount rate is still the same as in equation
otherwise, the minimum effective cost discount rate on action j will be such that (PTw); = (¢; —

AC]'), AC; = max{cj — Cie (PT’l.U)j/(PT'lU)iC,Cj — (PT’U))J}

Using this, the error incurred by the designer on an agent with pre-response attributes  will consist
of two parts, an equilibrium coefficient error and an inevitable error due to noises,

E(f,a,z) = [w' (x + Pa) — 07 (x + Pa))? + err(n). (11)
Note that although the agents’ best responses are independent of &, the equilibrium individual errors
depend on z for any w # 6.

‘We next consider the problem of designing an incentive (discount) mechanism.

Theorem C.1. For general f(z) = w”'z and p(z), finding the optimal IC, IR, and discount mecha-
nism requires solving non-convex optimization problems and thus is NP-hard.

Proof. Recall that the AS utility of the principal is

re. * 7 \2
U0 = [ Bal = (e + Pai(a) ~ o) lote)ds — H(G)
which if we rewrite the equilibrium individual error as
E(f,a,z) = [w' (x + Pa) — 87 (x + Pa))? + err(o),

the objective becomes

Ul (f) = /X _&(f,a,2)p(x)dz — H(G).

Such bound was not needed in the classification setting, as the fact that f(z) < 1 naturally provided this.
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Figure 9: An illustration of the CS best response and the discount mechanism in regression, where
the green dashed lines are equal decision outcome contours, P = [1,1],w = 1, PTw = (1,1),¢2 <
c1, the red dashed line is the discounted equal cost contour with a minimum effective discount.

The integral part is non-concave for general p(z).

On the other hand, for a target AS best response where o < 1,a4 = aﬁej +(1- a)%eic,

ozBAc;f
ST * 9
cj ch

we have H(G) = ¢ =

_ B .
where a > 1, a4 = ozcj_Ac;e], we have

and the where H(G) is linear in a. for a target AS best response

1 a—1)e; + Act
« _ = @ch:( )] 7
cijcj c; — A «

?

and

H(G) = BAc; _ B((a—l)cj—‘:Ac;‘?).
cj — Acj ¢j — Acj

We can similarly show that H(G) is piece-wise affine in a and thus the entire objective is non-

concave and the problem is non-convex. O

The difficulty of designing incentive mechanisms for strategic regression problems stems from the
fact that the equilibrium individual errors depend on  and thus the overall prediction error depends
largely on p(z). Moreover, the individual equilibrium error is not monotone in any action dimension
for a general w # 6. As a result, we can not follow the same methods used in the strategic classifi-
cation setting to find sufficient conditions that simplify the search for the optimal mechanism.

However, the mechanism designer can now leverage the fact that the agents have identical best
responses to facilitate the search for IC and IR discount mechanisms that satisfy S(f,G) > 0, as
shown in the following theorem.

Theorem C.2. Suppose the computation of integration [, E(f,a,x)p(x)dzx, Va can finish in finite
time. Then Algorithm 3 runs in polynomial time and any G # 0 it returns is IC, IR and satisfies
S(f,G) > 0.

Proof. This algorithm has two loops, making it finish in polynomial time.

The outer loop enumerates through all improvement action dimensions and chooses the minimum
effective discount amount to incentivize the agents to take an AS best response a4 = a%ej +
J J
(1— a)%eic, where o < 1. The inner loop grid searches the « values for each j to see if an IC
el
and IR and S(f, G) > 0, computes the corresponding ¢ and keeps track of the G that generates the
largest S(f, G). O

The finite computation time assumption is met, for example, when the distribution X is discrete or
when p(z) is uniform.
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If f incentivizes non-zero responses, then Algorithm sets AAc; at the minimum effective discount

aBAc;

value, and sets no discount on other actions. Then, it chooses ¢ = 0,¢ = ——x_ so that it in-
~J -]

centivizes all agents to take an AS best response a¥ () = a%e] +(1- a) elc If f

incentivizes 0 responses, then the principal can choose Ac; = ¢; —
Algorithm 3]s that a* () = ae;.

(PTw); and set ¢ = aBin

Below, we also discuss the cases when w =0, e.g.,
the principal’s optimal LS strategy f7 ( 0Tzﬂ

ALGORITHM 3: Grid Search an IC,
Lemma C.3. Ifw = 0 in f and f incentivizes O re- R and S(f,G) > 0 Mechanism for Re-
sponses or improvement, then the optimal IC and IR gression

discount mechanism is G = Q.

Choose e > 0;
This is straightforward since the principal cannot fur- @C <~ = P-€ic; Smaz < 0;
ther lower the error from err(n) and thus does not  ans < (0, [0,0]);
want to pay the agents. Ec « [y E(f,ac,z)p(x)dz;

If f incentivizes gaming, then the equilibrium indi- forj =1: M, do

vidual error becomes, £(f,ac,z) = [07 (x+ Pa},)— Ac0; S0, ac¢
07z)2 + err(n) = (07 Pa})? + err(n), which is in-
dependent of the pre-response attribute .

Theorem C.4. Ifw = 0 in f, and f incentivizes gam-
ing, then the optimal IC, IR, and BB G4 # 0 can be
found as follows:

Choose i = argmax <, (P70);/c; as the target

(PTw);

D) &= ¢j = (pry, - Cics
while S > 0 do
. = _ aBAgj
a<—a+te Cc= o —Deys

ap\ =

a%ej +(1- a)%eic;
EA<—fX (f,aa,z)p(z)dz;
S(—Ec—EA—C,

dimension, and set Nc;, = Acj,

Then, derive the alternative form of individual sub- end

sidy surplus as s(a) = (2a — o?)(07 Pal,)? if § > Sia, then ~

aBAc;, (c;, — ODciy,)™t and get o = | Smax = S; ans < (Ae, [0,7));
BAc; , (ciy—Dei )t end

argmax,<; s(a) = 1 — Q(OT*I‘DG*C)QA . Then ond

find the optimal ¢ by ¢ = a* BAc; , (¢;, — [\¢; )~ Return ans.

Proof. In the special case, if improvement is incen-
tivized by the mechanism, it is the dominant strategy to use the minimum effective discount amount,
since a higher discount achieves the same error reduction but a higher subsidy cost.

(1-a)

individual subsidy benefit is the reductlon in the expected prediction error

For an AS bestresponse a4 = a—~= AC e; + elc, where o < 1, the alternative form of

0T Pay)? — (1 — a)*(67 Pa})?,
the subsidy costis H(G) =¢ = :_Bic* , and thus we have the alternative individual subsidy urplus

s(a) = (2a — a®) (0T Pal)? — aBAc;, (ci, — Neiy) 7t
O
An interesting observation is that the principal does not try to completely remove gaming with the

discount mechanism. This is because when the error drops to a sufficiently low level, the marginal
subsidy benefit becomes lower than the marginal subsidy cost, which is a constant.

8Similar to the classification setting, we let the algorithm put discount on one action dimension. Any ¢ <
is equivalent to both the agents and the designer here since the agent will by default use the discount amount ¢
for the maximum improvement. The algorithm can return on condition S > 0 as well.

°The optimal CS strategy in regression does not guarantee w = @ when incentivizing improvement is
impossible.
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D SUPPLEMENTARY MATERIALS FOR SECTION [4]

We provide a more detailed description of group differences as follows. We consider the following
set of definitions; the first is new to the best of our knowledge and the other two were introduced in
Milli et al.| (2019).

Definition 1 (Group Disadvantages). We say group 2 is

1. disadvantaged in attributes in classification if F) (1) > FM(1) for | € (0,1), where
FD js the cumulative density function (cdf) of the conditional {)re response qualzﬁcatzon
status conditioned on d € {1,2}; the same in regression if F? > FU(y) fory €
(0, maxy q(x)).

2. disadvantaged in positive individuals (in classification) if F ( ) > ( ), where F} (@) 4
the cdf of conditional pre-response qualification status (I(x )\Y = D d),d € {1, 2}

3. disadvantaged in action cost if R (a) > hV(a),Va # 0, where h? denotes the action
cost functions with sensitive attribute d € {1,2}. Moreover, the minimum effective discount

values satisfy (AcM)r < (Ac®))r, Vi

D.1 FAIRNESS ISSUES IN THE CS/LS EQUILIBRIUM

We start with a number of fairness limitations of the CS equilibria in classification and regression;
the same results apply to LS.

Theorem D.1. In the equilibrium CS outcome of classification where two groups have the same
action cost, then (i) if group 2 is disadvantaged in attributes, then there is a DP gap no matter if
f incentivizes improvement or gaming; and (ii) if group 2 is disadvantaged in positive individuals,
then there is an EO gap if f incentivizes gaming but not necessarily if f incentivizes improvement.

Part (1) is a direct result of 1 — F(M) (1) > 1 — F()(]), and the two groups have the same implicit
threshold, which is the lower side boundary of their manipulation margins (since every agent above it
will manipulate to get a positive decision outcome), and M) (f) = M@)(f) since the two groups
have the same action cost. For part (2), whether there is a quality gain gap entirely depends on
whether f incentivizes improvement and the distribution of each group in its manipulation margin
MD(f). For example, we can have Pr(z € M@ (f)|D = 2) > Pr(z € MW (f)|D = 1) and
thus group 2 have more agents to improve and may have an inverse quality gain gap.

Theorem D.2. In the equilibrium CS outcome of classification and regression, if group 2 is disad-
vantaged in action cost but has the same pre-response attribute distribution as group 1 (for positive
individuals as well), then there is (i) a quality gain gap only if f incentivizes improvement; (ii) an EO
gap no matter if f incentivizes improvement or gaming; and (ii) a DP gap no matter if f incentivizes
improvement or gaming.

Proof. The DP gap is only related to f(z) but not y or 3, when the two groups have the same action
cost but group 2 is disadvantaged in attribute, the implicit threshold (the lower side boundary of
M?(f), 71) is the same for both groups and from the definition of attribute disadvantage, PR(") =
1—FW (7)) >1 - F®(7) = PR®, and we know that the DP gap exists.

When f incentivizes gaming, the reason of an EO gap is similar as above TPR(") = 1 —FS) (71) >

1— Ff)(ﬁ;) = TPR®. If f incentivizes improvement, then the EO gap depends on both the CS
TPR in both groups, the CS PR in both groups, and the AS quality improvement in both groups. For
example, if G' only not incentivize agents in the manipulation margins, then

PRc (1-TPR¢c)- PRc

=1
PR4 AQa+ PRc

TPRAo=1—FNR4s=1—-FNR¢

and we know that the AS EO gap depends on AQA), AQA which is based on p(!) () and p?) (z)
and we can not easily conclude the EO gap changes. [
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Figure 10: An illustration of the CS DP gap when group 2 is disadvantaged in attributes.

To understand the above result, we note that if group 2 is disadvantaged in cost, we have M) ()2
MP)(f), so even when group 2 has the same pre-response attribute distribution, a larger portion
of group 1 are accepted in the equilibrium, causing the DP gap. This is similar to the reason of
an EO gap when f incentivizes gaming. If f incentivizes improvement, then a larger portion of
group 1 will improve and be accepted in the equilibrium, causing a quality gain gap and an EO gap
simultaneously.

D.2 INFLUENCE OF THE DISCOUNT MECHANISM ON FAIRNESS

Here we analyze how the discount mechanism G alone may influence the fairness.
Theorem D.3. If group 2 is disadvantaged in cost but has the same pre-response attribute distribu-

tion, then a rational principal will choose a G that widens the quality gain gap in both classification
and regression.

Proof. If group 2 is disadvantaged in cost, then it is cheaper to incentivize a groupl agent than a
group 2 agent to get the same qualification status improvement, and thus the principal subsidizes
more group 1 agents and creates a quality gain gap. O

Theorem means that a rational mechanism for the principal is always making the system more
unfair when the quality gain gap is the metric. The rational mechanism influences the DP and EO
gap but does not always make them worse.

D.3 ANALYTICAL RESULTS ON THIRD PARTY MECHANISM DESIGN

The mechanism designer can induce truthful revelation of the sensitive attribute by the agents as
follows: (1) Let G consist of two group-specific mechanisms G") and G(?; agents who do not
reveal their d participate in G(1); (2) Ensure that Acgl) < Acl@) ,Viand (Ac)Ta € [¢V),eV] =
(Ae®)Ta € [¢?),E?)]. Then, group 1 agents are indifferent about revealing d while revealing d is
the dominant strategy for group 2 agents. Figure 2]illustrates the three-party AS learning system.

Theorem D.4. [fthere is a mechanism that is IC and IR and satisfies S(f, G) > 0, then a mechanism

that satisfies IC, IR, and BB criteria exists and weakly improves the third party’s social well-being
objective (either efficiency or fairness oriented) compared to the original AS equilibrium.

Proof. We still need G to be IR for the principal, where the maximum tax a rational principal accepts
is the subsidy benefit 7(G) < S(f, G) + H(G), and the BB condition requires S(f, G) + H(G) >
T(G) > H(G). So, as long as S(f,G) > 0, there is an IC, IR, and BB third party mechanism.
Therefore, finding the optimal IC, IR, and BB third party mechanism is the same as

maximizeg W (f,G), subjectto S(f,G) >0,
and if S(f, G) > 0 the mechanism can further improve its objective by setting the surplus at 0. [J
We also discuss how the objective of the mechanism designer and the corresponding incentive mech-
anisms influence the equilibrium efficiency and fairness oriented social well-being metrics. We com-

pare the different AS, CS, and LS equilibrium outcomes where they have the same decision rule f
and focus on how the incentive mechanisms for different objectives affect the outcome.
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Definition 2. We say a mechanism G¢ # 0 is an ideal mechanism if it is IC and IR for group d
agents and achieves S(f,G%) > 0 on group d, Vd € {1,2}.

Theorem D.5. If group 2 is disadvantaged in action cost but has the same pre-response attribute
distribution as group 1 (for positive individuals as well), then in the equilibrium,

1. the DP gap in weak ascending order is: AS-fair, CS(LS), AS-dm, AS-eff;

2. the EO gap (or quality gain gap) in weak ascending order is: AS-fair, CS(LS), AS-dm,
AS-eff;

3. The social quality improvement in weak descending order is: AS-eff, AS-dm, CS(LS).

If there is an ideal mechanism for group 1, then AS-fair is strictly the lowest in DP gap; the orders in
EO gap (or quality gain gap) and quality improvement becomes strict for CS(LS), AS-dm and AS-eff.
Moreover, if there is an ideal mechanism for group 2, AS-fair is strictly the lowest in EO gap (or
quality gain gap).

Proof. For Part (1), the fairness oriented third party can implement the ideal mechanism on group 2
and even further subsidize other group 2 agents to reduce the gap while avoiding subsidizing more
group 1 agents to enlarge the fairness gaps.

For Part (2), any ideal mechanism makes sure the efficiency oriented third party has “remaining
budget” to incentivize more agents to improve compared to AS-dm outcome and thus has the strictly
highest equilibrium social quality improvement. [

Below we provide some explanations about the statements in Theorem .1} For an efficiency ori-
ented third party, the set of agents it incentivizes is a superset of the agents incentivized by the
principal, making AS-eff the best in part (3). This is because subsidizing the agents with a positive
individual subsidy surplus not only helps the third party improve the objective but also raises the
budget to subsidize agents with a negative individual subsidy surplus (individual subsidy deficit).
Moreover, the efficiency oriented third party tries to incentivize more agents from group 1 since
they are “cheaper” to incentivize and thus exacerbates the fairness issues in part (1) and (2).

For a fairness oriented third party, it can also incentivize a superset of agents incentivized by the
principal, but that means incentivizing some group 1 agents, which results in two contradicting
effects: it helps the third party gather more “funding” to subsidize group 2 agents, but also makes
the fairness issue worse simultaneously. As a result, the social quality improvement in AS-fair is
better than CS(LS) and worse than AS-eff, but how it compares to AS-dm depends on the specific
game parameters and thus is not discussed in part (3). When there is an ideal mechanism for group
2, the third party can ignore the dilemma of subsidizing group 1 agents and focus on subsidizing
only group 2 agents to improve fairness in part (1) and (2).

The ideal mechanisms in Theorem makes the comparison strict. The existence of an ideal G(?)
is a sufficient condition to the existence of an ideal G(!) when group 2 is disadvantaged in cost but
has the same distribution. This is because G (%) itself is ideal for group 1.

Theorem D.6. In both classification and regression problems, if group 2 is disadvantaged in at-
tributes (resp. positive individuals) but has the same action cost as group 1 then

1. the DP (resp. EO) gap in AS-fair outcome is weakly the lowest, and is strictly the lowest if
there is an ideal mechanism for group 2;

2. the social quality improvement in AS-eff outcome is weakly the highest, and is strictly the
highest if there is an ideal mechanism for either group.

When group 2 has the same cost, then an ideal G(?) is no longer sufficient or necessary for an
ideal GV to exist for general classification problems, and that’s why the condition in part (2) looks
different from Theorem But the existence of an ideal G(?) is sufficient and necessary to the
existence of an ideal G(!) in regression, as well as in a special class of classification problems where
w = 0 in f and [ is convex on [0, T]P;GI From Theorem we know that DP and EO gap always

'We are excluding extreme distributions in the “iff” claim, e.g., Pr(z € M(f)) = 0.
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Figure 12: The Likelihood CDF Figure 13: Single Group (Caucasian) Results

exist in the CS(LS) problem, but if there is an ideal G(?), the fairness oriented third party can further
incentivize group 2 agents to reduce the gap in part (1) (those not in M (2) (f) to reduce the DP gap).
Theorem D.7. Suppose group 2 is disadvantaged in cost but has the same pre-response distribution
(for positive individuals as well) Denote p(d) := Pr(D = d), then an IC, IR, and BB mecha-
nism G # 0 that satisfies 'yg = B0 = 40P = 0 exists if S(f,GM) + (1 — pM)H(GW) >
PP H(G®), st kP (a) = 1P (a), va.

Proof. If h(Al) (a) = h(AQ) (@), Va, then the equilibrium feature and attribute distribution are the same
for both groups, and thus there is no fairness gap. Meanwhile, the subsidy benefit are the same
in both groups, so the overall benefit is S(f, G")) + H(G)), and the overall subsidy cost is
pMWH(GW) + p@ H(G?). 0

In general, this condition can hold if p(*) is much larger than p(?), i.e., the disadvantaged group is
also the minority group in the population or S( f, GM)) is very high.

Remark 2. Our results generalize to multiple groups when the definitions of group disadvantages
and fairness metrics are consistent.

E FULL NUMERICAL EXPERIMENT AND RESULTS

This section presents numerical results obtained using the FICO score
Reserve| (2007) dataset preprocessed in Hardt et al.| (2016b). The credit
card holders are considered as agents and they have repayment rates that
can map to the likelihood function [ in our model. The principal uses
binary classification to predict whether the agents will default. We assume
that 6 = 1, P = [1, 1], and the agent can either choose a; to improve or
as to game the classifier f(z) = 1(z > 71), i.e., x is the pre-response 00

normalized FICO score as well as the attribute, ' =  + a; is the post- 000 D23 050 o7 L0
response attribute, and z = x + a; + ay is the post-response normalized

FICO score. Figure shows how the repayment rate [(x) changes with Figure 11: Repay Rate
x; it has an S-shape, with I(x) = 0.5 approximately corresponding to ()

2 = 0.3 and I(z) (nearly) convex on [0, 0.3]. We assume that the principal

chooses w = 1, which aligns with the LS and CS optimal solution from Section[3]when ¢z < ¢;.

-
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We start with the properties of the discount mechanism and show how the principal’s CS and AS
utility changes with different choices of threshold 7. We then show the impact the incentive mecha-
nisms have on social well-being metrics.

Throughout this section, we use a quadratic outcome likelihood cost function and assume that cgl) =

c1 = 8 and cél) = co = 4 (for the advantaged group if there are action cost differences). For the
multiple group case, we make the following two sets of comparisons. (1) Groups with different
distributions: the Hispanic group is disadvantaged in features and in positive individuals compared

to the Caucasian group (see Figure[I2). (2) Groups with different costs: we will assume there are
two subgroups (A and B) in the Caucasian group, and group 2 has higher action costs c§2) = 10 and
c§2) = 5. We set p(t) = 0.8, p(?) = 0.2 as the population proportions.
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As a result, we show the AS-fair equilibrium outcome is the best well-rounded system design for
the augmented strategic learning problems.

The principal’s AS and CS utility. Using only the Caucasian data, the set of results in Figure
[13] show how the AS/CS principal utilities, subsidy surplus and qualification status improvement
change with the threshold 7.

We can see that the AS utility is always higher than the CS utility (Fig. [I3). This is because their
difference is the subsidy surplus, which is non-negative for a rational principal. We note that the
CS utility should always be single-peaked but the AS utility may have multiple local maxima since
the value of subsidy surplus is not monotone in 7 and depends on p(z). For other choices of ¢1, co
values, we find that the larger the difference c¢; — co, the smaller the utility difference and the closer
the optimal thresholds are (|7} ¢ — 75| lower). Both the subsidy surplus and the qualification status
improvement are positive, indicating the principal’s selfish strategy is also benefiting the efficiency
oriented social well-being. The improvement and subsidy surplus are also highly positively corre-
lated with a correlation coefficient of 0.92.

Social well-being of the strategic incentive mechanism. Figure |14| (resp. Figure shows the
quality improvement, PR and TPR, (and thus we can see the DP, and EO gap from the curve dif-
ferences) when the Hispanic group (resp. Caucasian subgroup 2) is disadvantaged in features and
positive individuals (resp. costs) compared to the Caucasian group (resp. Caucasian subgroup 1)
in the CS(LS) and AS-dm equilibrium. The principal does not incentivize agents outside of the
manipulation margin and thus the CS and AS PR curves are the same.

We can see from Fig-

. 10 10
ure [[4d that when 7 is .. _ﬁ:.f::'f;/ .
in the lower score ranges, Eozo J4 . o
the Hispanic group has o £ BOs) s
a slightly higher qualifi- EQE;E / R (R 0| — mss
cation status improvement boo / 02 Hispanic 1y | — HsCS
compared to the Caucasian 0.00 025 050 075 100 000 025 050 075 100 000 025 050 075 100

. . . Threshold Score Threshaold Score Threshold Score
group, whereas if 7 is in

the higher score ranges, (a) Improvement (b) PR (c) AS/CS TPR
the Caucasian group has
a much higher improve-
ment. Intuitively, this is 0301 — 61 caucasian
because the Hispanic (resp. . =] =&

Figure 14: Disadvantaged in features

Caucasian) group has a §,; % 0c g
higher probability mass in &0 S [
the lower (resp. higher) 0.05 0.4 1 — G1 Caucasian 0a GLCS
score ranges and a low  °% : S ——=

. . 000 025 050 075 100 000 025 050 075 100 000 025 050 075 100
(resp. high) 7 incen- Thresnold Score Threshold Score Threshold Score
tivizes a higher proportion

g prop (a) Improvement (b) PR (c) TPR

of agents to improve in the
Hispanic (resp. Caucasian) Figure 15: Disadvantaged in costs

group. Figure [I4b] shows

that the PR is 1 when 7 < 0.25; this is because all agents can manipulate to get f(z) = 1. When
7 > 0.25, the PR is strictly decreasing in 7 for both groups and the Caucasian group always has a
higher PR, i.e., the Hispanic group will suffer from a DP gap in both CS and AS-dm equilibrium.
This is because the lower side boundary of the manipulation margin becomes an implicit threshold,
where all agents above the implicit threshold can manipulate (no matter improvement or gaming)
to get accepted. The implicit threshold is the same for both groups since they have the same action
cost, and the DP gap is caused by the disadvantage in pre-response attribute distribution (Theorem
[D.T] part (1)). For similar reasons, Figure shows that the CS and AS TPR is 1 when 7 < 0.3.
Therefore, we can see that the AS TPR is always higher than the CS TPR for either group, because
now some agents improved their qualification status and get accepted at the same time, making the
numerator and denominator of the TPR formula increase by the same amount and thus increase the
TPR. On the other hand, the Hispanic group suffers from an EO gap in both the CS and the AS-dm
equilibrium, as previously discussed in Theorem [D.T] part (2).
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Figure 16: Third Party Outcomes with Attribute Distribution Differences
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Figure 17: Third Party Outcomes with Cost Differences

Figure [T54] and support our claims in Theorem part (3), where the incentive mechanism
widens the quality gain gap and the EO gap. Figure shows PR curves and the DP gap between
the two subgroups, which is determined by the pre-response attribute probability mass within [7 —

1/ cél), T—1/ ch)] (the difference between the manipulation margins in the two groups). Figure
shows the CS and AS TPR curves and the EO gaps; the implicit threshold creates the CS EO gap,
and the fact that group 1 agents are cheaper to incentivize jointly creates the AS EO gap.

Social Well-being metrics with the third party incentive. Social well-being results under the third
party model are shown in Figure 16| where groups have attribute distribution differences (Caucasian
and Hispanic group), and in Figure [3|where groups have cost differences (Caucasian subgroups).

We can see in both sets of results that the AS-fair equilibrium outcome significantly reduces and even
removes the fairness issues in the system, whereas the AS-eff equilibrium outcome has the worst
fairness metrics. On the other hand, the AS-eff equilibrium achieves the highest social qualification
status improvement. We note that the chosen AS-fair outcomes used mechanisms that incentivized
a superset of agents compared to those that are incentivized by the principal, and thus it achieves a
higher social qualification status improvement than AS-dm as well.
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