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ABSTRACT

While differentially private query release has been well-studied, research in this
area is commonly restricted to data that do not exhibit hierarchical structure. How-
ever, in many real-world scenarios, individual data points can be grouped together
(e.g., people within households, taxi trips per driver, etc.), begging the question—
what statistical properties (or queries) are important when considering data of this
form? In addition, although synthetic data generation approaches for private query
release have grown increasingly popular, it is unclear how one can generate syn-
thetic data at both the group and individual-level while capturing such statistical
properties. In light of these challenges, we formalize the problem of hierarchi-
cal query release and provide a set of statistical queries that capture relationships
between attributes at both the group and individual-level. Furthermore, we pro-
pose and implement a novel synthetic data generation algorithm, H-GEM, which
outputs hierarchical data subject to differential privacy to answer such statistical
queries. Finally, using the American Community Survey, we evaluate H-GEM,
establishing a benchmark for future work to measure against.

1 INTRODUCTION

Differential privacy (Dwork et al., 2006) provides rigorous guarantees for privacy protection that
centers around limiting the influence of any individual data point when utilizing sensitive informa-
tion. As a result, organizations have increasingly adopted differential privacy to release information
that is beneficial to the public while protecting the privacy of individuals. The 2020 U.S. Decennial
Census, for example, serves as one of the most prominent deployments of differential privacy in
recent years (Abowd, 2018).

In this work, we study differentially private query release, where the goal is to release a set of
summary statistics while preserving privacy guarantees. Query release is one of most fundamental
problems in differential privacy and remains a key objective for many organizations, including the
U.S. Census Bureau. While various types of methods have been proposed to tackle this problem, one
approach that has gained traction in recent years is to generate synthetic data that preserves statistical
properties (query answers) of the private dataset (Hardt et al., 2012; Gaboardi et al., 2014; McKenna
et al., 2019; Vietri et al., 2020; Liu et al., 2021a; Aydore et al., 2021; Liu et al., 2021b). In fact, after
announcing plans to incorporate differential privacy into the American Community Survey (ACS)
release (Jarmin, 2019), the U.S. Census Bureau also declared, albeit informally, that it intended to
replace the American Community Survey with fully synthetic data in the future (Rodrı́guez, 2021).

Studies using the ACS (as well as other hierarchical datasets) often study interrelationships between
individuals across groups, such as trends observed between domestic partners in a household. How-
ever, past works on private query release—including those that have used the ACS itself as a testbed
for their proposed algorithms (Liu et al., 2021a;b)—have ignored hierarchical data settings. In ad-
dition, social scientists have criticized the use of synthetic data generation approaches in general
(even without differential privacy), arguing that they can only capture statistical relationships at
the individual-level and are therefore unsuitable for ACS microdata (IPUMS USA). Attempting to
preserve differential privacy guarantees only further compounds this problem.
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Consequently, the objective of this paper is to initiate the study of differentially private query re-
lease for hierarchical data, and in pursuit of this goal, we make the following contributions: (1)
We formulate the problem of hierarchical query release with two levels in the data hierarchy
(group/individual). (2) We present a general set of queries that capture relationships between vari-
ables at different levels. In particular, we formulate queries in such a way that MWEM (Hardt
et al., 2012), a synthetic data generation algorithm designed for query release in the non-hierachical
setting, can be extended. (3) Finally, we introduce our algorithm, H-GEM, which adapts a neural
network architecture to outperform MWEM while scaling to significantly larger data domains.

2 PRELIMINARIES

We consider the problem of answering a collection of queries Q about some private dataset D. To
formalize this problem, we first let X = {0, 1}d denote some data domain of size d. As a result, any
dataset can be represented as some histogram D ∈ Nd. In the context of synthetic data generation
for private query release, our goal then is to output some synthetic dataset D̂ such that the error over
all queries (maxq∈Q |q(D̂)− q(D)|) is small.

We consider synthetic data generation algorithms that satisfy differential privacy (Dwork et al.,
2006), meaning that they employ randomized mechanismsM : X ∗ → R that are privacy-preserving
when accessing the private dataset.
Definition 1 (Differential privacy (Dwork et al., 2006)). A randomized mechanismM : Xn → R is
(ε, δ)-differentially privacy, if for all neighboring datasets D,D′ (i.e., differing on a single person),
and all measurable subsets S ⊆ R we have:

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ

Next, we introduce our definition of statistical linear query as the following:
Definition 2 (statistical linear query). Given a dataset D and predicate function φ : X → R, a
statistical linear query is a defined as

qlinearφ (D) =
∑
x∈D

φ(x)

For example, a statistical query counting the number of males in some dataset can be represented as
a statistical linear query that uses the indicator function φ(x) = 1 {x is male}. Similar to previous
work, we will normalize query answers with respect to some statistic, such as the total number of
rows in the dataset (e.g. % males = # males / # people). We formally define such queries as:
Definition 3 (normalized query). Given a dataset D and predicate functions φ1, φ2 : X → R, a
normalized query is a defined as

qnormφ1,φ2
(D) =

qlinearφ1
(D)

qlinearφ2
(D)

where for all x ∈ X , φ1(x) ≤ φ2(x).

Normalized queries can define conditional statistics, such as—What fraction of males in my dataset
are white? (i.e., φ1(x) = 1 {x is male and white} and φ2(x) = 1 {x is male}). Similarly, statistical
queries that output counts as fraction of rows in the dataset (rather than the total) can be reduced
to the simple case in which φ1(x) ∈ {0, 1} and φ2(x) = 1 for all x ∈ X (i.e., qlinearφ2

(D) = |D|
counts the total number of rows in D).

Finally, following previous work on private query release, we will focus our attention to tabular data
with columns that are either categorical or discretized, using k-way marginals for our predicate φ.
Definition 4 (k-way marginal). Given a subset S ⊆ [d] of k attributes and a target value y ∈∏
i∈S Xi for each feature in S, a k-way marginal query is given by:

φS,y(x) =
∏
i∈S

1 {xi = yi}

where xi ∈ Xi means the i-th attribute of record x ∈ X .

In other words, k-way marginals define some logical conjunction over k attributes in X . We define
each subset of attributes S as a marginal, where each marginal is comprised of

∏k
i=1 |Xi| queries.
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Table 1: Given some predicate function φ, we can distinguish between different hierarchical queries
by reducing the query type to (1) whether counts are made at the group- or individual-level and
(2) the domain of the predicate function φ (i.e. group- or individual-attributes). We then describe
the corresponding condition for each combination of (1) and (2) and give an example using 1-way
marginals for φ.

DOMAIN(φ) Conditions Example

group
G satisfies predicate φ

What proportion of households
reside in rural areas?

I contains individual row What proportion of households
that satisfies predicate φ contain at least one male individual?

individual
I satisfies a predicate φ

What proportion of individuals
are male?

G belongs to a group that What proportion of individuals
that satisfies predicate φ live in rural households?

3 HIERARCHICAL COUNTING QUERIES

We consider data with some hierarchical structure, in which the data can first be partitioned into
different groups that can then further be divided into individual rows. For example, one can form
a hierarchical dataset from census data by grouping individuals into their respective households.
We assume that each group contains at most M rows and has kG features G = (G1 × . . .× GkG).
Similarly, we assume that each individual row belongs to some data domain of kI features I =

(I1 × . . .× IkI ). Together, we then have a hierarchical data universe X = G × (I× ⊥)
M , where

⊥ represents an empty set of features in I (i.e., a nonexistent individual). Letting the group-level
domain size dG =

∏kG
i=1 |Gi| and individual-level domain size dI =

∏kI
i=1 |Ii|, the overall domain

size can be written as d = dG

(∑M
i=1 (dI)

i
)

. Finally, we let NG be the number of groups in D and
NI be the number of individual rows.

Having grouped the attributes of our hierarchical domain into group and individual-level attributes
G and I, we now introduce two classes of queries—(1) counting queries at the group-level QG
(i.e. proportion of households) and (2) counting queries at the individual-level QI (e.g. propor-
tion of individuals). In other words, all queries in this work follow the form—What proportion of
[groups/individuals] satisfy condition C?—where C is some boolean condition that depends on (1)
some predicate function φ (and its corresponding domain) and (2) the query class (group/individual)
they belong to. Consequently, for any dataset D ∈ X with NI individual rows comprising NG
groups, the `1-sensitivities of queries in QG and QI are 1

NG
and 1

NI
respectively.

We summarize in Table 1 the different query conditions for both group and individual-level queries
that we consider. In particular, we use the 1-way marginal as our predicate function to define the
conditions found in Table 1. Given some set SG of group-level attributes and set SI of individual-
level attributes where k = |SG| + |SI |, we construct a set of group and individual-level queries by
combining conditions Ci for each attribute Xi ∈ SG ∪ SI (i.e., each query condition is the conjunc-
tion of k conditions found in Table 1). For example, given the group-level attribute URBAN/RURAL
and individual-level attributes SEX and RACE, we have queries of the following form:

1. (QG) What proportion of households are located in an urban area and contain at least one
individual who is female and white?

2. (QI ) What proportion of individuals are female, white, and reside in a household located
in an urban area?
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4 MODELING

We first describe how to represent queries in QG and QI w.r.t. a histogram representation D of X .
Using Definition 3 to represent queries in Q, we are then able to extend MWEM to hierarchical data
in X . To overcome the computational bottlenecks of MWEM, we then introduce our main method,
H-GEM, which models the hierarchical structure in X as a mixture of various product distributions.

4.1 EXPLICIT HISTOGRAM REPRESENTATIONS

First, we consider algorithms that optimize over the distributional family D, where D ={
x | x ∈ [0, 1]d, ‖x‖1 = 1

}
is the set of all normalized histograms over X . Specifically, we demon-

strate how to evaluate any hierarchical query on some histogram D, which in turn allows us to
directly optimize our objective using the multiplicative weights update rule in MWEM. Given some
dataset D ∈ D, we can write both group and individual-level queries according to Definition 3
where qlinearφ (D) = 〈~qφ, D〉 and ~qφ = [φ(x1), . . . , φ(xd)].

Group-level counting queries (QG). Given that each histogram D is a joint distribution over all
possible group types, we have that φ1 : X → {0, 1}. Moreover, since we are normalizing over the
total number of groups, we simply have that φ2(x) = 1 =⇒ qlinearφ2

(D) = 1 for all D ∈ D.
Therefore, group-level counting queries q(D) = 〈~qφ1

, D〉 are linear in D.

Individual-level counting queries (QI ). Each group can contribute up to M individuals when count-
ing the total individuals satisfying some predicate function. Therefore, we must instead write such
queries as normalized queries qnormφ1,φ2

where φ1, φ2 : X → N≤M and φ2(x) evaluates to the number
of individual rows in the group (i.e., attribute X (c)). Then in this case, q(D) = 〈~qφ1 , D〉/〈~qφ2 , D〉

4.2 PRODUCT DISTRIBUTIONS VIA GENERATIVE NEURAL NETWORKS

Next, we introduce our algorithm, Hierarchical GEM (or H-GEM), which models the joint distri-
bution (over X ) of group types using a collection of product distribution mixtures parametrized by
neural networks. We derive our algorithm from GEM (Liu et al., 2021b), which uses a single neural
network to parametrizes distributions for non-hierarchical data. We describe our changes below:

Modeling. Given some noise z ∼ N (0, I), we use a multi-headed neural network F in H-GEM
and let Fc(z), FG(z), and FI(z) denote the output of each head. In our model, Fc(z) defines a
probability distribution over the possible number individual rows in a particular group. Meanwhile,
FG(z) and FI(z) model the distributions of groups and of individual rows within in each group
respectively. For our experiments, we use an MLP (with residual connections) for F , where FG
is the concatenation of M separate product distributions that we designate as FI,1 . . . FI,M . Thus,
combining all three heads, we have that F (zi) is some (M + kG +MkI)-dimensional vector.

Sampling. To sample rows from F (zi), we carry out a 2-stage sampling procedure. First, we
sample from FG(zi) a set of attributes in G to define the group-level features and the number of
individualsm ∼ Fc(zi) in each group. Subsequently, we samplem sets of individual-level attributes
I according to the distribution FI(zi). Note that we fix which individual-level distribution FI,j
corresponds to each group size. For notational purposes, we designate that the set of distributions
{(FG)j | j = 1 . . .m} correspond to individual rows in a group of size m (i.e., the first row is
sampled from FI,1(zi), the second from FI,2(zi), etc.).

Loss function. Following the Adaptive Measurements framework (Liu et al., 2021b), at each
round t, H-GEM is given a set of selected queries Q̃1:t = {q̃1, . . . , q̃t} and their noisy measurements
M̃1:t = {m̃1, . . . , m̃t}. As in GEM, we have some batch size B such that z ∼ N (0, IB). Then for
each query q, there exists a corresponding function fq : Rd → R such that the answer given by our
neural network F for any query q is fq (F (zj)). Using `2-norm, we have the loss function:

LH-GEM
(
Q̃1:t, M̃1:t

)
=

t∑
i=1

‖m̃i − fq̃i (F (z))‖2 (1)
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where

fq (F (z)) =
1

B

B∑
k=1

(∏
i∈SG

(FG(zk))i

) M∑
m=1

(Fc(zk))m

1−
m∏
j

(
1−

∏
i∈SI

(FI,j(zk))i

)
for group-level hierarchical queries and

fq (F (z)) =
fq,1 (F (z))

fq,2 (F (z))

fq,1 (F (z)) =

B∑
k=1

(∏
i∈SG

(FG(zk))i

) M∑
m=1

(Fc(zk))m

 m∑
j=1

(∏
i∈SI

(FI,j(zk))i

)
fq,2 (F (z)) =

B∑
k=1

M∑
m=1

m (Fc(zk))m

for individual-level hierarchical queries.

5 EXPERIMENTS

We evaluate our methods on the American Community Survey (ACS) (Ruggles et al., 2021), se-
lecting data from 2019 for the state of New York. In addition to our main evaluation dataset (ACS
NY-19), we take a low-dimensional extract (ACS-SMALL NY-19) of the data so that we can eval-
uate the performance of MWEM1 across privacy budgets ε ∈ {0.125, 0.25, 0.5, 1.0}. We provide
more details of how we construct our datasets and queries in Appendix A.1. We show in Figure
1 that both MWEM and H-GEM are able to produce synthetic data to answer hierarchical queries,
with H-GEM outperforming MWEM and scaling to higher-dimensional data domains.2

Figure 1: Max and mean errors for group and individual-level hierarchical queries evaluated on
ACS/ACS-small NY-19 where ε ∈ {0.125, 0.25, 0.5, 1} and δ = 1

N2
G

. The x-axis uses a logarithmic
scale. Results are averaged over 5 runs, and error bars represent one standard error.

1To empirical performance, we incorporate modifications detailed in Liu et al. (2021a)—namely (1) using
the Gaussian mechanism with zCDP composition (Bun & Steinke, 2016) and (2) recycling past measurements.

2It is computationally infeasible to run MWEM on ACS NY-19 since it requires maintaining a distribution
over a domain of size d ≈ 7.3× 1071
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A APPENDIX

A.1 EXPERIMENTAL SETUP

A.1.1 DATA

We select households of size M = 5 or smaller for ACS and M = 3 or smaller for ACS-SMALL.
In addition, we binarize attributes in I for ACS-SMALL by combining categories in order to reduce
the domain size further. We detail in Table 2 the attributes we select for each dataset.

ACS-SMALL has total domain size of 262080. We note that if we ignore hierarchical structure of
this data domain (as in typical settings in the literature) and consider the datasets as only collections
of individuals, the domain size would be significantly smaller at 960. On the other hand, using the
same histogram representation for ACS gives us domain size of d ≈ 7.3 × 1071, necessitating the
more compact representation found in H-GEM.

Table 2: Data Attributes
Dataset Domain Attributes

ACS

G
COUNTYFIP, METRO, FARM, OWNERSHP

FARMPROD, ACREHOUS, ROOMS
BUILTYR2, FOODSTMP, MULTGEN

I
SFRELATE, SEX, MARST, RACE

HISPAN, CITIZEN, EDUC, SCHOOL
EMPSTAT, LOOKING, AGE

ACS-SMALL
G METRO, OWNERSHP, FARM, FOODSTMP

I SEX, AGE, EMPST, MARST

A.1.2 QUERIES

As shown in Section 3, given some set of group and individual-level attributes S = SG ∪ SI , we
construct a set group and individual-level queries QG and QI . We restrict the number of attributes
for each query to |S| = 3. Because of the size of ACS-SMALL, we simply choose all possible
queries in this settings (|Q| = 1640 queries). For ACS, we randomly sample k sets of attributes for
each possible number of group-level attributes (i.e., |SG| = 0 . . . 3). This in total gives us 4× k sets
of attributes S to construct Q. In our experiments, we select k = 128, which amounts to 434774
queries.

A.2 ADDITIONAL ALGORITHM DETAILS

We provide the exact details of our variant of MWEM and H-GEM in the following sections.
Both algorithms fall under Adaptive Measurements where we assume all queries q ∈ Q have
`1-sensitivity ∆Q = max

(
1
NG

, 1
NI

)
= 1

NG
. Note that the `p-sensitivity of function (i.e., query)

captures the effect of changing an individual in the dataset and is used for deriving the noise required
to be added for preserving differential privacy.

Definition 5 (`p-sensitivity). The `p-sensitivity of a function f : X ∗ → Rk is

∆f = max
neighboringD,D′

‖f(D)− f(D′)‖p

Consequently, both algorithms satisfy ρ-zCDP and (ε, δ)-DP for ε ≤ ρ+ 2
√
ρ log(1/δ) (Liu et al.,

2021b, Theorem 1).
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A.2.1 MWEM

We restate MWEM in Algorithm 1, with a slight change to the multiplicative weights update rule—
in our case, we rescale qt(x) by a factor of 1

M (Algorithm 2) when qt is an individual-level query so
that |qt| ≤ 1. In addition, we add empirical improvements described in Liu et al. (2021a), which are
presented in Algorithm 2.

Algorithm 1: MWEM
Input: Private hierarchical dataset D ∈ X , query class Q = QG ∪QI
Parameters: Privacy parameter ρ > 0, number of iterations T , max per-round iterations Tmax
Let NG be the number of groups in D
Let M be the maximum possible number of individual rows belonging to a group in X
Let ε0 =

√
2ρ

T(α2+(1−α)2)
for α = 1

2

Initialize A0 be a uniform distribution over X
for t = 1 to T do

Sample: Select query q̃t ∈ Q using the exponential mechanism with parameter ε0 and score
function

P [q̃t = q] ∝ exp

{
αε0NG

2
|q(D)− q(Ai−1)

}
Measure: Take (via the Gaussian mechanism) measurement

mt = q̃t(D) +N

(
0,

(
1

NG(1− α)ε0

)2
)

Update: At = MWEM-Update (At−1, Q̃t, M̃t, Tmax) where Q̃t = 〈q̃1, . . . , q̃t〉 and
M̃t = 〈m̃1, . . . , m̃t〉

end for
Output: A = avgt∈[T ]At−1

Algorithm 2: MWEM-Update
Input: Normalized histogram A, queries Q = 〈q1, . . . , qt〉, noisy measurements
M = 〈m1, . . . ,mt〉, max iterations Tmax
Let amax = max1≤t≤|Q| |mt − qt(A)| be the max error across queries in Q
Let Stop be the collection of indices t for the top Tmax queries with highest error |mt − qt(A)|
Let Sthreshold =

{
t | t ∈ Stop, |mt − qt(A)| ≥ amax

2

}
be the collection of indices t ∈ Sthreshold such

that the error for qt is greater than amax
2

for t ∈ Randomize(Sthreshold) do
Let A be a distribution s.t.

A(x) ∝ A(x) exp

{
q̂t(x)

(
mt − qt(A)

2

)}
where

q̂(x) =

{
q(x) q ∈ QG
1
M q(x) q ∈ QI

end for
Output: A

A.2.2 H-GEM

In Section 4.2, we proposes a new neural architecture structure for modeling hierarchical data, while
also providing details on how the output probabilities can be used to either answer hierarchical
queries directly or sample synthetic data. We note that our overall method, H-GEM shares the same
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training procedure as GEM under the Adaptive Measurements framework. However for the sake
of completeness, we include this procedure in Algorithms 3 and 4 for readers to refer to. Finally, we
note that in our experiments, F is a multi-headed MLP with two hidden layers (size 256 and 512).

Algorithm 3: H-GEM
Input: Private hierarchical dataset D ∈ X , query class Q = QG ∪QI
Parameters: Privacy parameter ρ > 0, number of iterations T , privacy weighting parameter α,
batch size B, max per-round iterations Tmax
Let NG be the number of groups in D
Let ε0 =

√
2ρ

T(α2+(1−α)2)
Initialize generator network F0

for t = 1 to T do
Sample: Sample z = 〈z1 . . . zB〉 ∼ N (0, IB)
Select query q̃t ∈ Q using the exponential mechanism with parameter ε0 and score function

P [q̃t = q] ∝ exp

{
αε0NG

2
|q(D)− q(Ai−1)

}
Measure: Take (via the Gaussian mechanism) measurement

mt = q̃t(D) +N

(
0,

(
1

NG(1− α)ε0

)2
)

Update: Ft = H-GEM-Update (Ft−1, Q̃t, M̃t, Tmax, γ) where Q̃t = 〈q̃1, . . . , q̃t〉,
M̃t = 〈m̃1, . . . , m̃t〉, and γ = EMA

(
|Q̃t − M̃t|

)
end for
Let θout = EMA

(
{θj}Tj=T

2

)
where θj parameterizes Fj

Let Fout be the generator parameterized by θout
Output: Fout (z)

Algorithm 4: H-GEM-Update
Input: Neural network F , queries Q = 〈q1, . . . , qt〉, noisy measurements M = 〈m1, . . . ,mt〉,
max iterations Tmax, stopping threshold γ
Sample z = 〈z1 . . . zB〉 ∼ N (0, IB)
Let a = M − fQ(F (z)) be errors over queries in Q (where fQ(·) = 〈fq1(·), . . . , fqt(·)〉)
for t = 1 to T do

Let Sthreshold = {i | |ai| ≥ γ}
Let Q̂ = {qi | i ∈ Sthreshold} and M̂ = {mi | i ∈ Sthreshold}
Update F via stochastic gradient decent according to Equation 1: LH-GEM

(
Q̂, M̂

)
Resample z = 〈z1 . . . zB〉 ∼ N (0, IB) and update a = M − fQ(F (z))
if maxi |ai| < γ then

break;
end if

end for
Output: F
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