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ABSTRACT

We propose a framework for sequential decision-making aimed at dynamically
influencing long-term societal fairness, illustrated via the problem of selecting ap-
plicants from a pool consisting of two groups, one of which is under-represented.
We consider a dynamic model for the composition of the applicant pool, in which
admission of more applicants from a group in a given selection round positively re-
inforces more candidates from the group to participate in future selection rounds.
Under such a model, we show the efficacy of the proposed Fair-Greedy selection
policy which systematically trades the sum of the scores of the selected applicants
(“greedy”) against the deviation of the proportion of selected applicants belonging
to a given group from a target proportion (“fair”). In addition to experimenting on
synthetic data, we adapt static real-world datasets on law school candidates and
credit lending to simulate the dynamics of the composition of the applicant pool.
We prove that the applicant pool composition converges to a target proportion set
by the decision-maker when score distributions across the groups are identical.

1 INTRODUCTION

In this paper, we seek to develop a framework for sequential decision making aimed at influencing
long-term societal fairness. Machine learning models are being increasingly applied in making crit-
ical decisions that affect humans, such as recidivism prediction (Dressel & Farid (2018)), mortgage
lending (Berkovec et al. (2018)), and recommendation systems (Yao & Huang (2017)). While the
algorithms offer increased efficiency, speed, and scalability, they could introduce bias leading to the
decisions being unfair towards certain groups of the population. There is a rich and rapidly growing
literature on “fair” strategies that mitigate bias in algorithmic decision making, including label or
data pre-processing and cost reweighting based on groups (Kamiran & Calders (2012)), addition of
constraints that satisfy fairness criteria (Zafar et al. (2017)), and learning representations that ob-
fuscate group information (Zemel et al. (2013)). Most strategies consider a static setting or study
short-term impact of decisions on population (Liu et al. (2018)), with the exception of some recent
studies on the long-term impact of fairness-aware decisions on the qualification of the population
(Zhang et al. (2020); Mouzannar et al. (2019); Hu et al. (2019); Williams & Kolter (2019)). (See
Appendix A.1 for a more detailed discussion of related work.)

Our framework is motivated by real-world examples such as the following. Consider a company
receiving applications every month, which wants to hire in an unbiased manner (e.g., by ultimately
selecting equal numbers of male and female applicants). With the total intake fixed based on a bud-
get, the company selects a certain proportion of candidates from each group. The hiring decisions
affect the subsequent pool of applicants: admitting more candidates from a particular group might
encourage more such candidates to apply, or successful candidates from a group might inspire other
such candidates, providing positive feedback into the decision-making loop. Such a strategy could
not only enhance diversity and equity, but also enable the company to learn more about a minority
group so as to eventually have a richer pool of well-qualified applicants. Another motivating exam-
ple is college admissions, where the goal may be to admit students with the best academic records,
while accounting for socio-economic background and reducing bias based on sensitive attributes
such as race or gender. Could one, for example, reverse the trend in the decrease in the proportion
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of women in STEM as documented in Broad & McGee (2014)? It reported that 18% of bachelor’s
degrees in computer science were awarded to women in 2010, down from 37% in 1985. Studies also
point out that fewer women choose to apply to such fields as result of societal influences. We sug-
gest here a structured framework for fair selection aimed at combating such systemic imbalances by
encouraging a larger number of people from minority groups to participate in the selection process.
Contributions Based on a simple model for evolution of the composition of the applicant pool,
we develop a framework for fair selection by formulating the problem as a Markov Decision Process
(MDP) with two objectives – maximizing the utility by admitting candidates with the highest scores,
and minimizing the disparity between the proportions of selected candidates from each group. We
present two policies for fair selection: an optimal policy based on value iteration that maximizes the
utility accumulated over multiple rounds, and a computationally simpler Fair-Greedy (FG) policy.
We characterize the structure of the FG policy and show convergence and also prove that the appli-
cant pool proportion approaches the target proportion that is desired by the system under identical
score distributions across the two groups. We illustrate the efficacy of our approach with experiments
with synthetic data, as well as with dynamic data created from the static law school (Wightman
(1998)) and German credit (Dua & Graff (2017)) datasets.

2 MDP FORMULATION AND THE FAIR-GREEDY POLICY

There are Nt applicants in round t, out of which Nu
t belong to group u and Nv

t = Nt −Nu
t belong

to group v, based on a binary valued sensitive attribute. We wish to admit a fixed proportion ā
of the total applicants, leading to At = āNt number of total applicants accepted in round t. We
denote by Au

t and Av
t = At −Au

t the number of applicants selected in round t from groups u and v
respectively.
Score distributions The qualification of an applicant is measured by the score, assumed to be an
increasing function of the proficiency of a candidate. Let Pu and Pv denote the score distributions
of the two groups. Thus the scores for groups u and v are {Xu

i }
Nu

t
i=1 and {Xv

i }
Nv

t
i=1, generated from

Pu and Pv respectively. We denote the ordered scores by {Xu
(i)}

Nu
t

i=1 and {Xv
(i)}

Nv
t

i=1, where Xu
(i) and

Xv
(i) denote the ith largest scores out of Nu

t and Nv
t respectively.

Fairness-aware utility The goal is to optimize the utility, which comprises of two parts: a greedy
term (to be maximized) which is the expected sum of scores of selected candidates, and a fair term
(to be minimized) measuring disparity between groups based on a target proportion.
MDP formulation We define the MDP state st ∈ [0, 1] as the proportion of applicants from group
u out of the total, and the action at ∈ [0, 1] as the proportion of selected candidates from group u
out of the total selected candidates:

st =
Nu

t

Nt
, at =

Au
t

At
.

We denote by s̄ ∈ (0, 1) the long-term target of the proportion of group u among the selected
applicants. For example, if group u is under-represented in the applicant pool, we may set s̄ as the
proportion of group u in society at large. Instead, if our long-term goal is to admit equal number
from both groups, we set s̄ = 0.5. Note that formulating the states and actions as proportions of
group u is sufficient since the proportion of applicants and admitted candidates from group v is
naturally 1− st and 1− at respectively. The overall utility or reward is:

R(st, at) = RG(st, at)− λLF (at), (1)

where the greedy reward term is the expected sum of ordered scores of admitted candidates, given
by:

RG(st, at) =
1

At
E
[ Au

t∑
i=1

Xu
(i) +

Av
t∑

i=1

Xv
(i)

]
=

1

At
E
[ atAt∑

i=1

Xu
(i) +

(1−at)At∑
i=1

Xv
(i)

]
,

and the fairness loss term is
LF (at) = (at − s̄)2. (2)

In (1), λ ≥ 0 is a parameter used to control the weight given to the fairness objective relative
to the greedy objective. The greedy objective promotes the admission of good candidates, while
the fairness objective promotes fairness in selection proportion. Note that the fairness objective
is balanced: it pushes the selection proportion towards s̄ regardless of whether group u is under-
represented or over-represented among the selected applicants.
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Applicant pool evolution We model the positive reinforcement provided by our decision making
as a set of transition probabilities P(st+1|st, at). We consider a model where the total number of
applicants Nt to the system at round t can be any sequence of numbers and the number of applicants
from group u to the system is sampled from a Poisson distribution based on the mean parameter and
overall number of applicants (which is variable) as Nu

t ∼ Pois(θtNt), where Pois(·) is the Poisson
distribution with mean θtNt. Thus, θt is the mean proportion of group u in the applicant pool in
round t. We consider the following simple model for positive reinforcement:

θt+1 = θt + η(at − st), (3)

where η is a step-size parameter. That is, when the admission rate at of the group u is higher than
the application rate st, more applicants from the group are encouraged in future rounds, and vice
versa. The state then evolves as st+1 =

Nu
t+1

Nt+1
.

The model for positive reinforcement is relevant to many real-world selection systems and is inspired
by the social behavior that the successful admission of candidates from a particular group encourages
more such candidates to apply to the institution. For instance, a large number of female college
graduates in society serve as role-models, encouraging the future generations of women to go to
college. However, if a particular program is known for admitting women at a rate smaller than the
application rate, lesser women might consider the institution as worth applying to.

Optimal policy The optimal policy π∗(s) for the preceding MDP can be found through dynamic
programming (Bertsekas (2007)) by iteratively solving the Bellman equation as described in Ap-
pendix A.2. We observe through simulations that the structure of the optimal policy π∗(s) is similar
to that of the simpler Fair-Greedy policy proposed next, and that the applicant pool evolution con-
verges to an equilibrium point.

Fair-Greedy policy Finding an optimal policy is computationally expensive as the state space
grows larger. We therefore propose a simple, yet effective, Fair-Greedy (FG) policy that optimizes
the instantaneous overall utility in (1):

π∗
FG(s) = argmax

a
R(s, a). (4)

We first prove that, when the score distributions are identical across groups, the greedy reward
term is optimized when the admission proportion is the same as the applicant proportion. Next, we
provide theoretical guarantees for the convergence of the applicant pool to the target proportion and
characterize the FG policy. The proofs are deferred to Appendix A.3.
Theorem 2.1. If the score distributions Pu and Pv of the two groups are identical, under the regime
of large Nt, the greedy reward RG(st, at) is optimized by the action:

a∗G = argmax
at

RG(st, at) = st. (5)

Theorem 2.2. For identical score distributions across the groups, the Fair-Greedy policy satisfies
the following: (a) st < π∗

FG(st) < s̄, if st < s̄; (b) s̄ < π∗
FG(st) < st, if st > s̄; (c) π∗

FG(s) =
s̄, if st = s̄. Furthermore, if the step-size ηt decays with time and satisfies the conditions (i)

∑
t ηt =

∞ and (ii)
∑

t η
2
t < ∞, the applicant pool proportion converges to the target proportion s̄. This

implies that the admission or action at equilibrium also approaches the societal or target proportion,
in the asymptotic regime that the total applicants in every round are large.

3 EXPERIMENTAL EVALUATION
FG policy on synthetic data: We begin by evaluating our framework with synthetic Gaussian
datasets. In the first experiment, we set the target proportion s̄ = 0.4 and the selection rate ā = 0.3
(i.e., we aim to select 30% of the candidates who have applied). We assume identical Gaussian
score distributions for the groups with means µu = µv = 5 and variances σ2

u = σ2
v = 1. The step-

size is fixed as η = 0.05, though a decaying step-size would in fact aid in smoother convergence.
Figure 1a shows the convergence of the applicant pool to the target proportion of 40% as guaranteed
by our analysis. Note that tuning of the hyperparameter λ is not required when score distributions
are identical (here we set λ = 2). As long as λ > 0, the applicant pool converges to the target
proportion, with only the rate of convergence increasing with λ, as we depict in Figure 1b. Next, we
focus on a setting where the underprivileged class u has larger variance, but slightly smaller mean
(σ2

u = 1.5, µu = 4.9). We set s̄ = 0.4, and consider a more selective process, with ā = 0.1. From
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Figure 1: (a) FG policy under identical score distribution across groups, showing convergence from
distinct initial mean parameters θ0 = 0.1, 0.9. (b) Applicant pool converges to target under identical
score distributions. (c) FG policy under selective system, lower mean and larger variance for group
u. Shows convergence from θ0 = 0.1, 0.9. (d) Applicant pool convergence for the selective system
under FG policy. (e) Histograms and Gaussian fit for score distributions of the law school dataset (f)
Applicant pool evolution with θ0 = 0.25, with varying λ for the law school dataset.

Figure 1c, we note that the applicant mean and also the group admission converges to a proportion
larger than s̄. This is due to the fact that as the admission rate gets selective, the greedy part of the
reward is optimized by an action that admits more from the group with longer tail (larger variance).
This is also evident in Figure 1d, where we observe that for smaller values of λ, i.e., when more
weight is assigned to the greedy reward, the mean parameter θt converges to larger values. However
with enough weight being given to fairness, the applicant pool still converges to the desired ratio.

FG policy on real-world datasets: We simulate the dynamics by considering the following: (i) the
law school (LS) bar exam dataset, applying our framework for selecting candidates who are likely
to be successful in the bar exam, based on features such as LSAT scores, undergraduate GPA, law
school GPA and others, with race as the sensitive attribute; (ii) the German credit dataset with gen-
der as the sensitive attribute, where the motivation is to encourage higher levels of participation of
women in the financial lending system. From the raw datasets, we calculate the score distributions
by fitting a logistic regression based predictor. The histogram of scores resembles a Gaussian distri-
bution, whose parameters we learn. In the experiments with LS dataset we set selection rate ā = 0.3,
and target proportion s̄ = 0.5. Figure 1e depicts the distinct group-wise score distributions for the
LS dataset, and Figure 1f shows the convergence of the applicant pool by plotting the mean param-
eter θt for various settings for the hyperparameter λ. The initial mean for the applicant proportion
is set to θ0 = 0.25, based on the proportion of non-white samples in the dataset. Since the mean
of scores of the underprivileged group is smaller and the application is not very selective, the utility
is maximized by admitting more from the other group. However, as the importance of fairness is
increased through λ, the applicant pool and admission rate both approach 50%. Additional details
about settings used in experiments, evaluations on the German credit dataset and the dynamics of
employing the optimal policy instead of the FG policy are in Appendix A.4.

4 CONCLUSION
Our results indicate the potential of achieving long-term fairness objectives through positive rein-
forcement via decision making. We hope that this work stimulates the collaboration between ma-
chine learning researchers and social scientists required for these ideas to make real-world impact. A
key future direction is to devise and conduct experiments for measuring, understanding and shaping
the evolution dynamics posited in our framework.
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A APPENDIX

A.1 RELATED WORK

Recent work on fairness in sequential decision making includes settings such as online classifica-
tion Bechavod et al. (2019), Bayesian decision making Dimitrakakis et al. (2019) and predictive
policing Ensign et al. (2018). Several works address the notion of imposing fairness in multi-armed
bandit and online learning problems Patil et al. (2020); Joseph et al. (2018); Chen et al. (2020); Hei-
dari & Krause (2018); Gillen et al. (2018). This body of work focuses on the design of policies and
the effects of fairness constraints on them. However, in these frameworks, decisions do not affect
future samples.

The importance of introducing dynamics into notions of fairness is highlighted by studies indicating
that static fairness criteria may lead to undesired long-term effects on minority groups Liu et al.
(2018), Zhang et al. (2019). While we focus in this paper on the participation rates of different
groups in the selection process, prior work on fairness in sequential decision making has focused,
either explicitly or implicitly, on the impact of decisions on the qualifications or score distributions
of the different groups.

In particular, Liu et al. (2018) models the effect of fairness-aware decisions via a one-step feedback
model: for example, they might model the mean change in credit score in a disadvantaged segment
of the population as a function of the rate at which bank loans are granted. It is shown in Liu
et al. (2018) that, depending on the specific model for the change, “fair” policies (e.g,. equalizing
selection rates or true positive rates across disadvantaged and advantaged groups) may sometimes
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lead to negative outcomes. The work Zhang et al. (2019) studies how the imposition of hard fairness
constraints leads to changes in the underlying feature distributions and the group representation. In
particular, they show that imposing typical notions of fairness such as statistical parity or equality of
opportunity could lead to exacerbation of the disparity between the group proportions of samples,
and the disadvantaged group may even exit the system.

Modeling the long-term impact in the sense of the updated population distributions feeding into the
subsequent examples seen by the system and studying such feedback effects have been traditionally
investigated using reinforcement learning frameworks via Markov Decision Processes (MDPs), and
introducing fairness constraints in the reward functions Wen et al. (2021); Ghalme et al. (2021); Jab-
bari et al. (2017). Departing from conventional statistical notions of fairness based on independence
or separation, Jabbari et al. (2017) adopts a ‘weakly meritocratic’ notion where they devise policies
such that, their algorithm never (probabilistically) prefers an action over another, if the latter has
larger long-term utility, which for example in a hiring process, can be viewed as the selction process
cannot target one group over another if selection from either groups leads to similar long-term utility
or benefit to the institution.

Recent works such as Zhang et al. (2020); Williams & Kolter (2019); Mouzannar et al. (2019) ex-
amine the long-term impact of decisions on the features of the population. Building on the work
of Liu et al. (2018), the authors of Williams & Kolter (2019) propose a dynamic model with the
motivation of loan lending decisions. They model the group-wise distributions of the likelihood of
loan repayment (analogous to score distributions in our framework), termed the payback probabili-
ties, and consider dynamics governed by the hypothesis: granting loans produces upward mobility
for a population when they are repaid. Along with examining the impact of fair decisions on the
likelihood of loan repayment, they also highlight the detrimental effects of unequal misestimation of
the payback probabilities across groups under their model, even under fair decisions. A fundamental
notion of fairness is that of ‘affirmative action’, which is viewed in Mouzannar et al. (2019) as bal-
ancing the long-term qualification across groups. The authors in Mouzannar et al. (2019) study the
evolution of qualification rates while attempting to maintain the social equity of selecting an equal
number of applicants from both groups. They assume that the selection decisions could act as either
an incentive or impediment, causing a change in the proficiency of a group: for example, systemic
rejection of a particular group may cause the group’s population to lose the interest to participate
altogether. The long-term dynamics of group wise qualification rates are also investigated in Zhang
et al. (2020). Under a partially observable MDP setting, they introduce a myopic policy, character-
ize the equilibrium of dynamics and study their effects on population under two regimes: one where
accepted individuals feel less motivated to remain qualified, and another where accepted individuals
get access to better resources and hence remain or become more qualified.

We adopt an outlook complementary to the preceding body of work, seeking to influence the par-
ticipation of under-represented groups in the selection process. We do not assume that the score
distributions change as a consequence of our decisions, but our model can be extended to accommo-
date such changes, as long as we can estimate them. Rather than studying the impact of fair policies
as in Zhang et al. (2020); Mouzannar et al. (2019); Williams & Kolter (2019), we provide a generic
framework for achieving long-term fairness dynamically. While we also consider a score-based se-
lection problem as in Liu et al. (2018), our notion of fairness is that the proportion of applicants and
also that of admissions is equitable across groups or approaches a target set by the policy-maker.
We adopt the MDP framework as well, but instead of imposing fairness as a hard static constraint
at every round in the sequential decision-making process, we define our reward as a composition of
two-fold objectives of maximization of scores of accepted individuals and minimizing disparity be-
tween the proportion of accepted individuals from a target set by the decision-maker. We model the
proportion of applicants as states of the MDP, thus the state space is different from that considered
in other works.

A.2 OPTIMAL POLICY

The maximum long-term reward accumulated by the system through the horizon H is given by

max
π

E
[ H∑
t=0

R(st, at)|π
]

(6)
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where π is the policy or mapping from the set of states to the set of actions. The optimal policy
π∗(s) can be found by exact methods such as value iteration Bertsekas (2007), where the optimal
value function is defined as:

V ∗(s) = max
π

E
[ H∑
t=0

γtR(st, at)|π, s0 = s
]
, (7)

which is the cumulative reward earned by playing policy π, and starting from initial state s, with
0 < γ < 1 being the discount factor. The optimal policy π∗(s) is found by iteratively solving the
Bellman equation:

V ∗
k (s) = max

a

∑
s′

P(s′|s, a)[R(s, a) + γV ∗
k−1(s

′)],∀s (8)

and the optimal policy is computed iteratively as below:

π∗
k(s) = argmax

a

∑
s′

P(s′|s, a)[R(s, a) + γV ∗
k−1(s

′)], (9)

until the optimal policy converges to π∗(s). It is also known that the value iteration algorithm
converges as long as the reward is bounded in magnitude Bertsekas (2007).

A.3 PROOFS

We restate the theorems and sketch the proofs for the same in this section.
Theorem A.1. If the score distributions Pu and Pv of the two groups are identical, under the regime
of large Nt, the greedy reward RG(st, at) is optimized by the action:

a∗G = argmax
at

RG(st, at) = st.

Proof. Recall that the greedy reward is given by:

RG(st, at) =
1

At
E
[ Au

t∑
i=1

Xu
(i) +

Av
t∑

i=1

Xv
(i)

]
Since we assume the space of actions as at ∈ [0, 1], the number of admitted candidates from each
group, more formally, are Au

t = ⌊atAt⌋ and Av
t = ⌊(1− at)At⌋. For simplicity of presentation, we

omit the ‘floor’ without loss of generality of our results since we are interested in the regime that Nt

is large. Therefore, we write:

RG(st, at) = atE

[∑atAt

i=1 Xu
(i)

atAt

]
+ (1− at)E

[∑(1−at)At

i=1 Xv
(i)

(1− at)At

]

By the law of large numbers, the collection of score variables {Xu
i }

Nu
t

i=1 and {Xv
i }

Nv
t

i=1 converge to
their respective distributions Pu and Pv as Nt increases. Choosing the top Au

t = atAt candidates
out of Nu

t (similarly top Av
t out of Nv

t ) is equivalent to setting a threshold tu (similarly, tv) and
admitting all candidates with scores above the threshold. This holds for generic score distributions
and they need not necessarily be identical across the groups. Thus for large Nt, the average score of
the admitted candidates from each group approaches its expected value as:

lim
Nt−→∞

∑atAt

i=1 Xu
(i)

atAt
= E[Xu|Xu ≥ tu]

lim
Nt−→∞

∑(1−at)At

i=1 Xv
(i)

(1− at)At
= E[Xv|Xv ≥ tv]

Rewriting the greedy reward in terms of the above conditional expectations leads to the following
equation:

RG(st, at) = at

∫∞
tu

uPu(u)du∫∞
tu

Pu(u)du
+ (1− at)

∫∞
tv

vPv(v)dv∫∞
tv

Pv(v)dv

8
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with the additional constraint being that the thresholds tu and tv are such that the total number of
admitted candidates is equal to At = āNt. Note that tu and tv depend on the current state st and
action at.

Since the acceptance is decided by a group-wise threshold, the fraction of applicants from a group
who are admitted is precisely determined by the area under its score distribution beyond the thresh-
old. Formalizing the above, for large Nt, we have:∫ ∞

tu

Pu(u)du = 1− Fu(tu) =
atAt

stNt∫ ∞

tv

Pv(v)dv = 1− Fv(tv) =
(1− at)At

(1− st)Nt
.

and the constraint on the total number of candidates admitted can now be expressed through the
following equivalent statements:

atAt + (1− at)At = āNt

stNt(1− Fu(tu)) + (1− st)Nt(1− Fv(tv)) = āNt,

and finally, we have:

stNt

∫ ∞

tu

Pu(u)du+ (1− st)Nt

∫ ∞

tv

Pv(v)dv = āNt. (10)

Let us now consider the maximization of the greedy reward. Given state st, and generic distributions
Pu and Pv , we need to set the thresholds tu and tv for the respective groups such that the sum of
scores of all admitted candidates is maximized. We show by contradiction that to maximize the
greedy reward, we require tu = tv .

Assume a pair of thresholds (tu, tv) that result in the maximization of the greedy reward, and tu <
tv . Let us denote the expected sum of scores of the admitted candidates by S(tu, tv), which is
the optimum. One can construct thresholds t′u = tu + ϵ1 and t′v = tv − ϵ2 (where ϵ1, ϵ2 > 0,
infinitesimally small for large Nt), such that we admit one more candidate from group v (as a result
of the decreased threshold) and one less from group u (as a result of the increased threshold) as
compared to the case with thresholds (tu, tv). As long as t′v > t′u, we have S(t′u, t

′
v) > S(tu, tv),

which contradicts the assumption that (tu, tv) maximize the greedy reward. Similarly, if we begin
with a pair of optimal (tu, tv) such that tu > tv , we can construct thresholds t′u = tu − ϵ3 and
t′v = tv + ϵ4, so that we admit one more candidate from group u and one less from group v. As
long as t′u > t′v , we arrive at the contradiction S(t′u, t

′
v) > S(tu, tv). Thus the greedy reward is

optimized when thresholds across the groups are equal, irrespective of the nature of Pu and Pv .

Thus, for arbitrary score distributions, the action that maximizes the greedy reward is such that:

tu = tv

=⇒ F−1
u

(
1− atAt

stNt

)
= F−1

v

(
1− (1− at)At

(1− st)Nt

)
(11)

If Pu and Pv are identical, the arguments of the inverse CDFs in (11) need to be equal. Thus the
optimal action should be such that:

1− atAt

stNt
= 1− (1− at)At

(1− st)Nt

=⇒ at = st.

Thus, the greedy reward is maximized by choosing the admission proportion of group u to be same
as the applicant proportion of group u:

a∗G = st.

Employing the above result, we arrive at the the following theorem which informs us about the
convergence of the applicant pool and characterizes the FG policy.

9
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Theorem A.2. For identical score distributions across the groups, the Fair-Greedy policy satisfies
the following properties:

st < π∗
FG(st) < s̄, if st < s̄

s̄ < π∗
FG(st) < st, if st > s̄

π∗
FG(s) = s̄, if st = s̄

Furthermore, if the step-size ηt decays with time and satisfies the conditions (i)
∑

t ηt = ∞ and
(ii)

∑
t η

2
t < ∞, the applicant pool proportion converges to the target proportion s̄. This implies

that the admission or action at equilibrium also approaches the societal or target proportion, in the
asymptotic regime that the total applicants in every round are large.

Proof. Under the FG policy, at = π∗
FG(st). The applicant pool update for the mean parameter is:

θt+1 = θt + η(π∗
FG(st)− st). (12)

The fairness loss in (2) is minimized when the admission proportion is same as the target, formalized
as:

a∗F = argmin
at

LF (at) = s̄

The overall reward R(st, at) is a sum of the greedy reward and fairness loss (scaled by λ). The
fairness loss is convex (hence −LF (at) is concave) in at. It can be seen that the greedy reward
monotonically decreases in either directions around at = st, and in addition it possesses continuity
in at. When at state st, suppose the optimal action a∗ of the FG policy is such that a∗ < st, when
st < s̄. Then by continuity and since the greedy reward is maximized at st, ∃ some a′ > st, such
that RG(st, a

′) ≥ RG(st, a
∗), and moreover has a smaller fairness loss, i.e., LF (a

′) < LF (a
∗),

which violates the optimality of a∗. Thus the optimal action for the FG policy must be a∗ > st, if
st < s̄. Similar arguments hold if st > s̄, and here we can show that the optimal action must be such
that a∗ < st. Hence, it follows that the optimal action for overall utility lies between the optimal
actions for greedy and fairness terms:

st < π∗
FG(st) < s̄, if st < s̄

s̄ < π∗
FG(st) < st, if st > s̄

π∗
FG(s) = s̄, if st = s̄

Now we show the convergence of the applicant pool to its equilibrium. Let us consider a step-size
that decays with time such that

∑
t ηt = ∞ and

∑
t η

2
t < ∞. Consider the case when st < s̄,

where we have: st < π∗
FG(st) < s̄. From (12), we can see that the mean proportion parameter

θt+1 increases. Similarly, when st > s̄, it follows that s̄ < π∗
FG(st) < st, and the mean proportion

parameter decreases. Note that the target proportion is a fixed point of the FG policy, i.e., π∗
FG(s̄) =

s̄. Due to the above characterization of π∗
FG(st) and the model for the update of the applicant pool,

the mean parameter θt grows or reduces in the direction of s̄. Hence, as the step-size is decaying,
one can show that the mean parameter θt converges to s̄. Moreover, the variance of the number of
group u applicants is var(Nu

t ) = θtNt due to the Poisson distribution. Thus, the state st = Nu
t /Nt

has variance O(1/Nt). Consequently, in the asymptotic regime that Nt is large, using Chebyshev’s
inequality one can show that st also converges to θt in probability. This implies that the applicant
proportion approaches s̄, which completes the proof.

A.4 ADDITIONAL EXPERIMENTAL DETAILS

A.4.1 EVALUATION ON SYNTHETIC DATA

We start by employing synthetic Gaussian datasets to demonstrate the fairness framework we de-
velop in this paper, and study interesting scenarios.

Optimal policy based on value iteration Let us first consider the MDP setting from Section 2,
where the policy learnt is the optimal policy (9) maximizing the accumulated utilities. Consider the
case where the two groups have identical score distributions. This may often be the case in real-
world scenarios when there is no inherent reason for the sensitive attribute to influence the scores

10
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or proficiency of a candidate. Let the score distributions be Gaussian with means µu = µv = 5
and variances σ2

u = σ2
v = 1. In this experiment, we set s̄ = 0.4 and the admission rate is fixed to

ā = 0.3, or in other words, the selector aims to admit only 30% of the total applied candidates. The
other parameter values used for this experiment are γ = 0.99, λ = 1.5, a fixed step-size of η = 0.05.
Figure 2 shows how the proportion of applicants, admitted candidates and mean parameter θt vary
for group u. We see in the figure that beginning the process from different initial states θ0 = 0.1, 0.9,
we observe convergence of the applicant pool proportion for group u. The optimal policy under the
evolution model considered has resulted in close to 40% of the applicants belonging to group u, and
also approximately the same proportion of the admitted candidates are from group u.
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Figure 2: Optimal policy under identical score distributions across the groups.

FG policy: under identical score distributions Let us now consider the same score distributions,
but the policy employed is instead the FG policy in (4), described in Section 2. Other parameters
are λ = 2, η = 0.05. Figure 1a shows the convergence of the applicant pool to the target proportion
of 0.4, and further, even the proportion of admitted candidates belonging to group u is around 0.4,
in accordance with Theorem 2.2. We also observe that the FG policy follows the structure stated in
the same. The framework is capable of handling an inversion in the majority and minority groups,
as we consider two initial states of θ0 = 0.1 and θ0 = 0.9. Also, note that for the FG policy
based decisions, the framework is such that tuning of the hyperparameter λ is not needed. As long
as λ > 0, the applicant pool converges to the target proportion, with only the rate of convergence
increasing with λ, as we depict in Figure 1b.

We also observe that when score distributions are non-identical, the applicant pool still possesses an
equilibrium point under the FG policy, discussed in the subsequent experiments.

FG policy: under selective applications We consider a setting with score distributions being
Gaussians with means µu = 4.9, µv = 5, but group u with larger variance σ2

u = 1.5, while σ2
v = 1.

Typically, such cases might occur when the data about unprivileged group is unreliable or there is
imbalance in the amount of samples available, leading to a larger variance. Other parameters are set
as s̄ = 0.4, ā = 0.1, λ = 2, η = 0.05. The parameters are set in this fashion to also inform us
about the dynamics when our application is more selective, i.e., we want to admit only 10% of the
candidates. From Figure 1c, we note that the applicant mean parameter converges to a proportion
larger than s̄. This is due to the fact that as the admission rate gets selective, the greedy part of the
reward is optimized by an action that admits more from the group with longer tail (larger variance).
This is also evident in Figure 1d, where we observe that for smaller values of λ, i.e., when more
weight is assigned to the greedy reward, the mean parameter θt converges to larger values. However
with enough weight being given to fairness, the applicant pool still converges to the target.

The dynamics of the applicant pool composition is studied for more distinct score distributions next
where we experiment with real-world datasets.

11
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A.4.2 EVALUATION ON DYNAMICALLY ADAPTED REAL-WORLD DATASETS

From the raw datasets, we first calculate the score distributions and the initial state of the system by
examining the empirical scores and fitting distributions to them.

The law school bar exam dataset consists of data collected by a Law School Admission Council
survey across law schools in the United States. The predictions indicate whether or not a candidate
would pass the bar exam based on features such as LSAT scores, undergraduate GPA, law school
GPA, race, sex, family income, age and so on. We consider race as the sensitive attribute, and though
originally there are 8 distinct races in the dataset, we group the samples by combining samples
corresponding to all others except ‘white’, giving rise to binary groups ‘white’ and ‘non-white’.

The German credit dataset consists of 1000 instances, with 20 features (both numeric and quali-
tative), such as credit history, account history, employment status, age, gender and so on. This is
typically used to assess the risk of lending loans to people, i.e., to determine if granting credit is
risky or not. We consider gender as the binary valued sensitive attribute, labeling women as group
u and men as group v. The dataset is imbalanced – about 31% of the instances belong to group u.

After pre-processing the datasets to suit our usage, our first step is to learn a score distribution
that measures the proficiency of every sample. To achieve this, we fit a predictor based on logistic
regression that uses the features and labels to fit scores, which are the derived as the product of the
model coefficients and the features. The histograms of the scores of the two groups reveal that they
are Gaussian in nature. We fit a Gaussian distribution for the group-wise scores, to obtain the mean
and variance parameters of the score distributions Pu and Pv .

The histograms and the Gaussian fit for the score distributions for the law school and German credit
dataset are depicted in Figures 1e and 3 respectively. For the law school dataset the parameters of
scores are µu = −1.46, σ2

u = 2.73, µv = 0.79, σ2
v = 3.16. For the German credit dataset the score

distributions are closer with parameters µu = 0.32, σ2
u = 1.93, µv = 0.85, σ2

v = 2.06.
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Figure 3: Histograms and Gaussian fit for score distributions of German credit dataset
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Figure 4: German credit dataset: applicant pool convergence with initial mean proportion parameter
θ0 = 0.31, as λ is varied.
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We will now simulate the dynamics of the application process, under the FG policy, by sampling
from these distributions with initial state of the applicant process θ0 determined by the number of
instances of respective groups, which is 0.25 for the law school and 0.31 for the German credit
datasets respectively. The variation of the applicant pool for different values of hyperparameter λ
are shown for the datasets in Figures 1f and 4 respectively. The evolution step size used in these
simulations is η = 0.025, admission rate is set to ā = 0.3 and the target proportion is set to
s̄ = 0.5, which is equivalent to demographic parity, i.e., admitting same number proportion of
candidates from both groups. In both the figures, we observe that when the greedy reward is favored
(lower values of λ), the applicant pool in fact converges to a point lesser than the target, while it
approaches the target as λ increases. This means that for maximizing the utility, more samples need
to be admitted from group v, due to the nature of their score distributions, when less importance
is allotted to fairness objective. The tuning of the hyperparameter λ to achieve desired level of
applicant pool proportion depends on the order statistics of Pu and Pv . The step-size parameter η
can be set appropriately based on how quickly we wish to achieve convergence.

These experiments with real-world datasets indicate that scores which are fit after learning predictors
based on logistic regression are distributed like Gaussians. Once we have the parameters of the
scores, the application of the FG policy and the applicant pool evolution follows.

It is interesting to examine how the score distributions change when we approach fairness through
unawareness, that is, by omitting the sensitive attributes while learning the logistic regression based
predictor. Note that we learn a single predictor based on all samples and then distinguish the scores
based on the sensitive attribute. Table 1 lists the score parameters when the predictor is learnt with
or without the inclusion of the sensitive attribute for the law school bar study and the German credit
datasets. For the law school dataset, we observe that the score distributions are not very different,
although the difference between the means of minority and majority groups has decreased slightly
when the sensitive attribute is dropped during the learning. For the German credit dataset, the
distributions are significantly closer when the sensitive attribute is omitted, and there is a clear drop
in the difference between the group means.

Dataset Sensitive µu µv σ2
u σ2

v
attribute

LS bar study included -1.46 0.79 2.73 3.16
LS bar study excluded -1.33 0.76 2.85 3.23

German credit included 0.32 0.85 1.93 2.06
German credit excluded 0.62 0.84 2.03 2.14

Table 1: Gaussian score distribution parameters for different datasets
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