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ABSTRACT

Machine learning models deployed as a service are often susceptible to model
stealing attacks. While existing attacks demonstrate near-perfect clone-model per-
formance using softmax predictions of the classification network, most of the APIs
allow access to only the top-1 labels. In this work, we show that it is indeed pos-
sible to steal Machine Learning models by accessing only top-1 predictions (Hard
Label setting), without access to model gradients (Black-Box setting) or even the
training dataset (Data-Free setting) within a low query budget. We propose a novel
GAN-based framewor that trains a clone model and generator in tandem to steal
the model effectively while utilizing gradients of the clone network as a proxy to
the victim’s gradients. We overcome the large query costs by utilizing publicly
available (potentially unrelated) datasets as a weak image prior. We additionally
show that even in the absence of such data, it is possible to achieve state-of-the-art
results within a low query budget using synthetically crafted samples. We are the
first to demonstrate the scalability of Model Stealing on a 100 class dataset.

1 INTRODUCTION

Deep learning based systems have progressed leaps and bounds over the past few years. Organiza-
tions often provide pretrained machine learning models as a service (MLaaS) where the end user is
allowed to query the model and get access to its predictions via APIs for use in various applications.
However, exposing the predictions of the models through queries makes the model susceptible to
model stealing attacks, which attempt to clone the victim model without access to its gradients, in a
black-box setting. Protecting the privacy of an ML model is of paramount importance as organiza-
tions invest significant resources on cutting edge research and also on gathering and labelling large
amounts of training dataHalevy et al.|(2009) for achieving competent performance on various tasks.
In addition, recent works [Papernot et al.| (2017)); Tramer et al.| (2017); Zhou et al.| (2020); Wang
et al.[(2021a)) have shown that an adversary could train a substitute model via model stealing and use
it further for crafting adversarial examples \Goodfellow et al.| (2014b)) in a black-box setting, which
poses a serious threat when the model is deployed in security critical applications. A stolen model
could also compromise the privacy of users by leaking confidential data through a membership in-
ference attack [Shokri et al.[(2017) or via model inversion |Zhang et al.| (2020); Zhao et al.| (2021)).
Figure{I|showcases some of the possible malicious outcomes of Model Stealing. In order to prevent
model stealing attacks, some defenses attempt to perturb the softmax predictions of the model, while
preserving the top-1 prediction |Lee et al.[(2018). In this work, we consider the problem of model
stealing in a more practical and challenging hard label setting, where only the top-1 prediction of
the model is accessible, and is thus effective even in the presence of such defenses.

In a model stealing attack, an adversary first queries a black-box victim model V with input data
and obtains a prediction for it as shown in Fig[l] This data along with its labels are used to
train a clone model C. In a practical scenario, the attacker would not have access to the train-
ing data, and hence we consider the problem of Data-Free Model Stealing (DFMS) in this work.
In such a data-free scenario, the attacker could use publicly available related datasets [Papernot
et al.| (2017); |Orekondy et al.| (2019a), or synthetically generated samples [Truong et al.| (2021)) to
query the model. While the use of publicly available datasets assumes access to related data, the
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data-free generative approach suffers from a large query budget, as the synthetic data can be far
from the true training data distribution. In this work we overcome both challenges by utilizing
the available data that may be unrelated to the original training dataset, as a weak image prior.
This enables the generation of representative samples under a low query budget, which is a cru-
cial requirement in model stealing attacks, since MLaaS APIs work on a pay-per-query basis.

While existing algorithms for Data-Free
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data-free hard-label model stealing and over-
come the challenges by utilizing the clone
model’s gradients as a proxy to the gradients
of the victim model. As the clone model starts
training, it acts as a useful proxy for the victim
model, and helps the generator learn to generate rich informative samples, which boosts the clone
accuracy further. We explicitly enforce the generation of a class-balanced dataset from the generator
that is also more aligned with the distribution of the training dataset. Additionally, we also utilize
an adversarial loss in a GAN framework Goodfellow et al.| (2014a), by using publicly available
potentially unrelated data, which we refer to as proxy dataAddepalli et al.|(2020). While this could
be completely unrelated to the original training dataset, it still helps in enforcing a weak image
prior in the generated data. This in turn reduces the number of victim model queries needed to
perform Model Stealing. In fact, we show that it is possible to even use synthetic samples, such as
multiple overlapping shapes with a planar background, to steal a model in a completely data-free
setting. Our method achieves a significant improvement over ZSDB3KD Wang| (2021), a zero-shot
data-free method in a similar hard label setting using only synthetic samples.

Figure 1: Model Stealing Attack and its vulner-
abilities

Key Contributions: Our key contributions are as follows.

* We propose DFMS-HL, a data-free model stealing (DFMS) attack in a hard-label (HL)
setting to train a clone model with the help of unrelated proxy data. We show that DFMS-
HL outperforms the existing baseline ZSDB3KD [Wang| (2021)) and results in a significant
reduction of around 500 X in the number of queries to the victim model.

* We demonstrate state-of-the-art results on the CIFAR-10 dataset using unrelated proxy
samples, such as a given subset (containing 40 or 10 non-overlapping classes) from CIFAR-
100, or synthetic data.

* We are the first to show noteworthy results of data-free model stealing on a dataset with a
larger number of classes such as CIFAR-100.

* The soft-label variant (DFMS-SL) achieves a significant boost of 3% over the state-of-the-
art model stealing attacks MAZE |Kariyappa et al.|(2020) and DFME Truong et al.| (2021).

2 PROPOSED APPROACH

We propose a data-free model stealing approach DFMS-HL that requires only hard-label access.
At first, we train a DCGAN by imposing an image prior using synthetic or unrelated proxy data.
This gives a good initialization for the generator G. We also train an initial clone model with the
proxy images. Following this, we begin our procedure of alternately training the clone model and
the generator. The data flow is shown in Fig. [2| wherein the generator G generates data x = G(2)
from a random vector z. The victim model takes input = and generates input, label pairs (z, §(z))
for each instance x. Since, the victim model is black-box, we do not backpropagate the gradients
through it. The labelled input pairs are used to train the clone model with the cross-entropy loss as
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Figure 2: Architecture of DFMS-HL: Generator G generates data x with a proxy image prior. The
clone model C is trained using the labels from the victim model V with a cross-entropy loss objective
Lcg. The discriminator D learns to discriminate between proxy and generated samples from G. The
generator G is trained with the adversarial loss L,4, along with the class-diversity 10ss L.jqss_div-
The generator and clone model are trained alternately in every iteration of the algorithm.

follows:

Lo = ZNAI/E(OJ) [Lor(§(z),C(x))], » = G(2) W

where §(z) = argmax V;(z) is the class label for the maximum probability class and C(x) is the

output logits from the clone model. The generator is trained with the adversarial loss |(Goodfellow
et al.| (20144a) and a unique diversity loss as shown below:

Lodv.real = E logD(x)], Ladv fake = E log(1 —D(G(z 2

dv,real mdia,,am[ 9D ()], Ladv, fak ZNN(OJ)[ 9( (G(2))] 2

Across a batch of NV samples, we take the expected confidence value over the batch as «; for every

class j and obtain the entropy over K classes. Hence, the generator model learns to generate samples
from different classes by minimizing the diversity loss formulation as below,

K N
1
Leiass.div = Z ajlogay, aj = N Z softmax(C(z;)); 3)
=0 i=1

The equations below describe the generator and discriminator losses, that are minimized alternately
for training.

£G = £adv,fak:e + )\divﬁclass,divy ‘CD = ‘Cad'u,real + ‘Cad'u,fake (4)
We refer the reader to Appendix B for details of the proposed method.

3 EXPERIMENTS

Comparison with Knowledge distillation (KD) methods: We perform experiments on CIFAR-10
as the True dataset as shown in Table[T|for comparing with existing KD methods. DeGAN|Addepalli
et al.[(2020) and ZSKD [Nayak et al.|(2019) are data-free knowledge distillation methods with white-
box teacher access. KnockoffNets |(Orekondy et al|(2019a) and Black-Box Ripper |Barbalau et al.
(2020) are data-free KD methods in a black-box setting. Similar to the experimental setting of prior
works |Addepalli et al.| (2020); |Barbalau et al.| (2020), we use 40 unrelated classes from CIFAR-100
dataset as the proxy dataset for CIFAR-10 model stealing. We also show results using 10 classes
sampled randomly from these 40 classes. We achieve comparable results with the data-free KD
methods despite having more restrictions on access to the victim model.

We also show results by using synthetically crafted data for imposing image priors using the dis-
criminator. For this, we generate a synthetic dataset of 50k samples by including random shapes
(triangle, rectangle, ellipse or circles) of randomly sampled sizes at random locations on a plain
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Table 1:  Comparison of DFMS-HL with  ppje 2. Comparison of DFMS-HL with data-
state-of-the-art KD methods(Top) apd free model stealing methods MAZE and DFME
ZSDB3KD(Bottom) ~on CIFAR-10  with (4, victim: ResNet-34) and with ZSDB3KD
AlexNet as victim and AlexNet-half as the (Bottom, Victim: ResNet-18) on CIFAR-10.

clone model . :
Hard Black Data Victim Data CIFAR-100 CIFAR-100 Clone mOdel arChlteCture 1S ReSNet-lS.

Method Hard Black Data Victim Data CIFAR-100 CIFAR-100
Label B F Al Fi 40C 10C
e ox Tree had ree (400) oo Method Label Box Free Acc Free (40C) (10C)
Victim Accuracy = 82.5% —
SKD /8250 6950  69.50 69.50 Victim Aceuracy ~ 955%
Z X X 23 x .5 .S
DeGAN X x v 8250 - 7630 72.60 MAZE x v v 9550 4560
KnockoffNets x v v 8250 - 65.70 46.60 DEME x v v 9550 8810 y y
Black-Box Ripper % v v 8250 - 7650 77.90 DEMS-HL (Ours) v v v 9559 8451 9206 85.53
DFEMS-HL (Ours) v v v 8252 65.70 76.02 71.36 DFMS-SL (Ours) X v v 9559 91.24 93.96 90.88
Victim Accuracy ~ 80% Victim Accuracy ~ 93.7%
ZSDB3KD VvV 7930 5946 5946 59.46 ZSDB3KD v v/ 9365 5018 5013 50.18
DFMS-HL Ous) v v v 8018 67.03 7427 70.57 DEMS-HL (Ours) v v v 9383 8592 9051 83.37

Table 3: Performance of DFMS-HL on CIFAR-100  Taple 4: Clone model accuracy (%) using

with different proxy datasets __ DFMS-HL with different proxy datasets.
Method Proxy Data| Victim Acc  Clone Acc Victim training Data: | CIFAR-10 | Fashion MNIST
DeGAN CIFAR-10 78.52 75.62 Proxy Data: ‘SVHN 11::);[2 CelebA im?‘ga Imagenette| CIFAR-10
DFMS-HL (Ours) CIFAR-10 78.52 72.83 £
ZSDB3KD - 5008 - - - -
DEMS-HL (Ours) DataFree |  78.52 43.56 DEMS-HL (Ours) | 84.83 84.51 8582 9226  90.06 ‘ 81.98

background of random color (details in the Supplementary). We also generate textured images by
increasing the maximum number of shapes to 100 and reducing the maximum region occupied by
the shapes in the image. These manually crafted images are converted to grey-scale and then used
as proxy data.

From Table [1} it can be observed that our approach not only outperforms ZSDB3KD by a large
margin, but also achieves a comparable accuracy with respect to the DeGAN and Black-Box Ripper
for the CIFAR-100 40 classes proxy data. We also use a significantly lower query budget of 8M as
compared to ZSDB3KD which requires 4000M queries. We also perform experiments on CIFAR-
100 (Table E]) with CIFAR-10 |Addepalli et al.| (2020); [Barbalau et al.| (2020) and synthetic data as
proxy datasets. DFMS-HL reaches a comparably close accuracy of 72.83% using CIFAR-10 as the
proxy without any access to the victim model’s gradients and only using hard labels. We report
the clone model accuracy with other proxy datasets in Table [d] For the data-free approaches, we
report the numbers under the “Synthetic” column across all tables since ”Synthetic” means that any
additional is not used in this case.

Comparison with Model Stealing methods. We compare our approach with the state-of-the-art
data-free Model Stealing approaches Kariyappa et al.| (2021); Truong et al.|(2021) in Table [2| We
obtain an accuracy of 84.51% by merely using synthetic samples in a completely data-free hard-
label setting. We use a lower query budget of 8M, as compared to that of DFME and MAZE that
require 20M queries for CIFAR-10. We further extend our attack to the soft-label black-box scenario
(denoted as DFMS-SL in Table [2) where the softmax predictions of the victim model are available.
We get a boost of almost 3% using synthetic data and CIFAR-100 10 classes with the same query
budget of 20M.

4 CONCLUSIONS

In this paper, we propose an effective model stealing attack in a practical setting of having access to
only hard-labels of a black-box victim model. Extensive experiments show that our method DFMS-
HL performs better than the state-of-the art model stealing method at a 500x lower query budget.
We further show that it is possible for an attacker to craft a synthetic dataset of images containing
various shapes on a planar background and use it to attack a victim model in a completely data-free
setting. We demonstrate the scalability of the proposed model stealing attack to CIFAR-100 as well
with a low query budget, which has not been attempted in prior works.
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A RELATED WORKS

In this section, we discuss existing Knowledge Distillation and Model Stealing works with varied
levels of access to the victim model as shown in Table 3

A.1 KNOWLEDGE DISTILLATION

Knowledge distillation Hinton et al.| (2015) aims to transfer the knowledge of a large pretrained
teacher model to a smaller student model without a significant impact on accuracy. This is primarily
used to compress models for deployment, in order to reduce the memory requirements and inference
time Gou et al.[(2021); Adriana et al.|(2015);|Yang et al.|(2020); /Aguinaldo et al.|(2019)). In practical
scenarios, training data is kept confidential due to privacy concerns. Hence, there has been a lot of
focus on developing data-free approaches for knowledge-distillation. ZSKD |Nayak et al.[(2019),
DAFL Chen et al|(2019), DFKD [Lopes et al.|(2017)) are popular knowledge distillation methods in
a data-free setting. A data-free KD method DeGAN |Addepalli et al.| (2020) demonstrated that it is
possible to use publicly available unrelated data (proxy dataset) to distill the knowledge of a teacher
model to a smaller student model. However, all these methods require access to the teacher model’s
gradients. Following this, Black-Box Ripper Barbalau et al.| (2020) was proposed to implement
model stealing by querying a black-box teacher model with unrelated proxy data. A recent work
ZSDB3KD Wang| (2021)) proposed knowledge distillation for a black box model with only hard-
label outputs. However, this approach is highly computationally intensive due to the requirement of
a very large number of queries (4000 million) to the teacher model. Our work considers the same
setup of having access to only the top-1 labels, with a significantly lower query budget of 8 million.

A.2 MODEL STEALING

Tramer et al.| (2016) demonstrated that an attacker could use queries to steal a machine learning
model with near perfect fidelity. Following this, model stealing has been implemented in various
domains |Krishna et al.[(2019); Jagielski et al.| (2020); |Pal et al.| (2019); |Correia-Silva et al.| (2018));
Milli et al.| (2019). A partial data approach JBDA [Papernot et al.|(2017)) assumed access to a small
set of samples from the data distribution. On the other hand, surrogate data approaches such as
KnockOffNets [Orekondy et al.| (2019a)) and Black-Box dissectorWang et al.| (2021b) consider that
attackers could use images from a different data source to steal a model. These methods fail to
perform well without a suitable surrogate dataset. This motivated the development of data-free
approaches which work well without using surrogate data or seed samples from the training data.
Recent data-free approaches such as MAZE Kariyappa et al.|(2021) and DFME Truong et al.| (2021}
attempt to extract models using GAN generated synthetic data. In these approaches, the generator
is trained to produce images that maximize the dissimilarity score between the clone and victim
models. The victim model’s gradients are required to measure this dissimilarity score, and are esti-
mated using zeroth-order gradient approximation. These approaches are computationally expensive
as they require a lot of queries (~20 million) to the victim model for synthesizing data samples in a
black-box setting. Moreover, these methods assume that the softmax vector from the teacher model
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Table 5: Taxonomy of prior works on Knowledge Distillation (KD) and model stealing attacks. Our
approach DFMS-HL is a data-free model stealing attack on a black-box victim model with access
to only hard labels.

A h White-Box Black-Box Black-Box
pproac Soft Label Soft Label Hard Label
Data f ZSKD |Nayak et al.|(2019) MAZE Kariyappa et al.|(2021) ZSDB3KD |Wang|(2021)
alalree  peGAN|[Addepalli et al.|(2020) DFME [Truong et al.|(2021) DFMS-HL (Ours)
Dat KD with KnockoffNets |Orekondy et al.|(2019a)
ata Data|Hinton et al.|(2015) JBDA |Papernot et al.|(2017) B

is accessible. Contrary to this, we consider a practical setting that allows access to only hard labels
from the victim model.

A.3 DEFENSES AGAINST MODEL STEALING

Lee et al.| (2018) propose to defend against model stealing attacks by perturbing the model pre-
dictions while preserving its top-1 label, to maintain similar classification accuracy. On simi-
lar lines, Prediction Poisoning (Orekondy et al.| (2019b) perturbs model predictions by poisoning
the output distribution at the cost of model accuracy. However, such defenses fail in a scenario
where an attacker has access to only hard labels from the model. A more sophisticated approach
EDM [Kariyappa et al.| (2020) introduces randomness into the predictions by using an ensemble of
diverse models to produce dissimilar outputs for Out-of-Distribution (OOD) samples, that are likely
to be used for querying the victim model in a model stealing attack. Similarly, Adaptive Misinfor-
mation [Kariyappa & Qureshi (2020) perturbs the predictions for OOD inputs only. However, these
approaches have been shown to cause utility degradation |Orekondy et al.| (2019b)), or can be made
ineffective using an adaptive query synthesis strategy (Chandrasekaran et al.|(2020). Further, |Chan-
drasekaran et al.[(2020; 2021)) provide theoretical insights to demonstrate that “model extraction is
inevitable”, even in a realistic setting with only hard labels, and even when models use randomised
defenses. Hence, a model with a reasonably good accuracy would always leak information that
could lead to model extraction. In this work we demonstrate that it is indeed possible to perform
model stealing in a severely restricted setting as well, and further achieve competent clone accuracy.
This paves way to the development of better defenses for preserving model privacy in future.

B DETAILS OF THE PROPOSED METHOD

B.1 CLONE MODEL TRAINING

The clone model C is trained using the data samples generated from the generator G. In every
iteration, we sample an m-dimensional random vector z, whose elements are sampled from m i.i.d.
Standard Normal distributions. This vector is forward propagated through G to generate images .
These images are then passed to the victim model to obtain its hard-labels. The clone model is
trained with the cross-entropy loss objective using the victim predictions as ground truth, as shown

below: o . . o § 5
T N0 [Lop(C(2),§(2))], v =G(2) )

where §j(z) = argmax V;(x) is the class label corresponding to the maximum probability class,
is an m dimensional identity matrix, and C(z) is the pre-softmax output from the clone model.

B.2 GENERATOR TRAINING

For imposing an image prior, we initially train a DCGAN generator using proxy data or synthetic im-
ages. However, we find that this is not sufficient as the generator could potentially suffer from mode
collapse and lack of diversity. Moreover, lack of class diversity can severely impact the learning of
tail classes in a hard-label setting. Hence, it crucial for the generator to generate a class-balanced set
of images for learning the information across all classes. Therefore, we use a class-diversity loss for-
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Algorithm 1 DFMS-HL : Algorithm for Model Stealing
Require: Ng,G,D,ng,nc
// Initialize a Generator G with DCGAN parameters
// Train the clone model C with DCGAN and proxy images using n¢ queries for initialization.
while ng # 0 do
x=G(z),2 ~N(0,I)
‘CG — Eadv,fake + Adivﬁclass,di'u
['D — ‘Cad'un'eal + Ead'u,fake
g < 0g — egVo, L
91) — 91) — EDVOD['D
ng < ng—1
end while
// Train clone model C
while n¢ # 0 do
x=G(z),2 ~N(0,I)
Le « Lop(C(x),)(x))
9@ — 9(} — Ecvgcﬁc
ng < nc—1
end while
// Start alternate training between G and C
while Ng # 0 do
// Train G and D with C as fixed
z=G(z),z ~N(0,I)
»CG — »Cadv,fake + )\div»cclass,div
ED — ACadv,real + ACadv,fake
Qg — 9g — EgVQG[:G
9@ — QD — EDVQDﬁ[)
// Train C with G and D as fixed
z=G(2),z ~N(0,I)
Lo« Lop(Clz), ()
9@ — 9(3 — ecVQC[:C
end while

mulation |Addepalli et al.| (2020) to generate diverse samples from the generator G while remaining
close to the manifold of the proxy/synthetic images.

The generator loss has two components. The first component is the adversarial loss |Goodfellow
et al.| (2014a) which causes the generator to generate data close to the proxy data distribution. The
second component is a class balancing loss|Addepalli et al.|(2020), to enforce a diversity constraint.
The two loss formulations for the generator are described in more detail below.

Adversarial Loss Goodfellow et al.| (2014a): The adversarial loss ensures that the distribution of
images is close to the images in the proxy or synthetic dataset.

‘Cadv,real = E [lOg,D(.’I?)] (6)
I""pdata(m)
Lutvsare =B, llog(1 = D(G(2) g

The discriminator D and generator G play a min-max game |Goodfellow et al.| (20144a) as follows:

ngn mgx Eadv,real + Eadv,fake (8)

Class Diversity Loss Addepalli et al.| (2020): The class diversity loss encourages the generation
of diverse images across all classes. In a batch of N samples, we consider the expected confidence
value over the batch as o; for every class j, and obtain the entropy over all K classes. The negative
entropy, denoted as L.4ss_div 1S computed as show]g below:

ﬁclass,div = Z &7} IOg aj &)
j=0
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N
aj = %Zsoftmax(C(xi))j (10)
i=1

Using clone Model as a proxy for victim: Since, the victim model is black-box, backpropagation
through V is not permitted. Hence, for imposing diversity we use the clone model parameters to
compute the loss. Over the training process, the clone learns to imitate the gradients of the victim,
making it a suitable proxy for enforcing diversity in the generated images.

The equations given below describe the overall generator and discriminator losses.
LG = ‘Cadvq,fake + )\divﬁclass,div (1 1)
‘CD = Eadv,real + Eadv,fake (12)

B.3 ALGORITHM

The overall training algorithm is outlined in Algorithm{I] We first train a DCGAN to initialize the
generator model with an image prior. Following this, we train the clone model using a mix of images
from the DCGAN and the proxy dataset to obtain a good initialization for the clone model. Using
this clone model, we further fine-tune the generator for ng epochs using the two proposed losses;
adversarial loss and class-diversity loss. We then train a clone model from scratch for ne epochs
using the images from the diverse generator G. Following this, we start the alternate training process
for the generator and clone model. We train the generator for one iteration by freezing weights of the
clone model and subsequently train the clone model for one iteration using labels from the victim
model. This procedure is repeated until the query budget Ng is exhausted.

B.4 COMPUTING THE QUERY COST

In this section, we compute the total number of queries to the victim model. The number of samples
in the proxy data is denoted as Np. Initially, we require nc queries to obtain a clone model to ini-
tialize the generator and an additional nc queries to initialize the Classifier C. For our experiments,
we set nc as 50,000. The alternate training of the clone and generator continues for E epochs and
in each epoch, the victim model is queried Np times. So the total query cost is computed as follows,

Ngo =FE-Np (13)
Total Queries = 2 - n¢ + Ng (14)
We set the query limit N to 8 million for our proxy and synthetic data experiments on CIFAR-10.

B.5 INSIGHTS ON QUERY BUDGET

Chandrasekaran et al.|(2020) formulated the model extraction task as a query synthesis active learn-
ing problem where an adversary learns a hypothesis function with a query complexity g4 (¢, d). They
show that, given a maximum query budget of g (¢, d) and a victim model V trained with a specific
hypothesis f* € F, there exists an adversary .A which implements an e-extraction attack with con-
fidence 1 — 0. Adversary A trains a clone model C with hypothesis f such that the following holds
true.

Pr[A trains fand Err(f) < e >1-6 (15)

where Err(f) = |Jw* — wl|2, w and & being the parameters of f and f*, respectively. This shows
that an adversary can implement a model stealing algorithm in a Query Synthesis scenario using
active learning.

Chandrasekaran et al.|(2020) further proved that model stealing is inevitable and there exists a query
bound within which a model could be stolen. They show that even when a victim employs a random-
ized procedure for returning labels such that the upper bound on the probability of returning wrong
labels pp (f*) < % an adversary can implement an e-extraction attack with confidence 1 — 26 within
the following query bound:

8 q(e, )
1)

1= T app (@O 1o

10
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We empirically find the query budget needed for the proposed approach in the Query ablation (Ap-
pendix E).

C EXPERIMENTAL SETUP

We evaluate DFMS-HL on two datasets: CIFAR-10 and CIFAR-100. For evaluation, we first train
a victim model with the same teacher accuracy as ZSDB3KD |Wang| (2021) for a fair comparison.
The victim models are trained till the accuracy reaches the teacher accuracy. We evaluate two set-
tings of ResNet18 and AlexNet as victim models, and ResNet18 and AlexNet-half as clone models,
respectively. We use an SGD optimizer with a momentum of 0.9, learning rate of 0.1 and a weight
decay of 5 x 10~ to train the models. We also use a cosine annealed scheduler to decay the learning
rate across epochs. At the start of the initial clone model training, we use the same SGD optimizer
and train the model from scratch for 200 epochs. After this, the clone model is further trained with
new images generated from the generator within the query budget or till the accuracy saturates.

For the generator, we use a DCGAN with upto five transpose convolution layers followed by batch-
normalization and ReLU units, except the last layer. The last convolution layer is followed by
Tanh activation units to convert the images in the normalised range of [-1,1]. The discriminator
contains a stack of five convolution layers followed by batch normalization and Leaky ReLU units.
The last layer of the discriminator uses a Sigmoid at the end. The GAN is trained with an Adam
optimizer Kingma & Ba|(2014) with a learning rate of 2 x 10~* with (1, 32) as (0.5,0.999).

D DATASETS

We perform experiments using different proxy datasets similar to prior works|Addepalli et al.|(2020);
Barbalau et al.| (2020) to evaluate the effectiveness of our method DFMS-HL. This section contains
a description of the different datasets that we used to evaluate our attack with CIFAR-10 as the true
dataset.

* 40-unrelated classes from CIFAR-100 Addepalli et al.| (2020): This consists of training
data from CIFAR-100 belonging to non-overlapping classes with respect to CIFAR-10.
The classes from the following categories are included: food containers, household electric
devices, household furniture, large man-made outdoor things, large natural outdoor scenes,
flowers, fruits and vegetables, trees.

¢ 10 random classes of CIFAR-100: From the above 40 unrelated classes, we choose 10
classes randomly to demonstrate this setting. The classes used are : plate, rose, castle,
keyboard, house, forest, road, television, bottle and wardrobe.

» Synthetic Dataset: We construct synthetic images which are far from the manifold of the
training data distribution to simulate this setting. The images contain multiple overlapping
shapes on top of a planar background. The creation of synthetic images is described in Sec.

D.1 CREATION OF SYNTHETIC DATASET

The algorithm to create a synthetic dataset is presented in Algorithm [2] At first, randomly sampled
shapes (triangle, rectangle, circle or ellipse) are generated at random locations in the image with a
randomly sampled colour. The shapes are generated using python skimage moduleﬂ A total of 50K
images are generated. We generate two kinds of images. The first variant contains large overlapping
shapes with number of shapes in the image (num_shapes) as 50 and the (min_size, max_size) of
each shape as (20,50). The initial image generated is of size (100 x 100) which is scaled down
to (32 x 32). The other variant contains textured images with (min_size, max_size) as (5,10) and
num_shapes=50 to get small overlapping shapes on top of a planar background. A random colour is
sampled and assigned to the background pixels. These images are then used to steal an ML model

2https ://scikit-image.org/docs/stable/auto_examples/edges/plot_random_
shapes.html
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Figure 3: Types of synthetic images used. An equal share of large(right) and small(left) overlap-
ping shapes on planar background used to train the clone model.

Algorithm 2 Algorithm for creating synthetic data

Require: Number of images to be generated Np, num_shapes, max_size, min_size
while Np # 0 do
Generates shapes on an image of size (100 x 100), with parameters: num_shapes, min_size,
max_size
Assign a random RGB colour to background pixels
Perform blurring on the image using a 4 x 4 filter
Resize image to (32 x 32)
N p N, P — 1
end while

trained on CIFAR-10 and CIFAR-100. The generated images are shown in Fig. 3] We share our
dataset hereE[

E ABLATION EXPERIMENTS

Effect of Query Budget: Query budget is one of the critical factors in model stealing as the number
of queries to the victim model is usually restricted. We do an analysis on the accuracy of the clone
model achieved with different number of queries. Our approach achieves a good accuracy with a
query budget of 7.6 million on synthetic data for AlexNet as victim model and AlexNet-half as clone
model. From Fig[] we observe that even with a small query budget of 1.26M, our method performs
well and it almost saturates within 8M. We report the saturating accuracies in Table[T|and[2] We use
a query budget of 10M for the CIFAR-100 experiments (Table[3) and 8M for CIFAR-10 experiments
(TableqI] and [2)). The class-diversity loss has a huge impact on the clone accuracy as we observe a
significant boost of 6% for the synthetic experiment for 7.6M queries. Hence, class balancing is an
essential component of our approach.

Effect of Class Diversity Loss: The class diversity loss plays a major role in determining the
diversity of samples generated by the Generator. We perform an ablation study to see the impact of
the class diversity loss by gradually increasing the loss coefficient from O to 1000 for synthetic data
as proxy with CIFAR-10 as the true dataset as shown in Fig. [S| We run the ablations for 150 epochs
of training which limits the queries to 7.6M. We find that increasing the coefficient \4;, of class-
diversity loss improves the clone model accuracy. We reported our final results with a Ag;, value of
500 for CIFAR-10 experiments in Table [T]and 2] and set A4, as 100 for CIFAR-100 experiments in
Table

Effect of alternate training: The generator and the clone model are trained once in every iteration.
We make efforts to further reduce the query budget by training the clone model after every ¢ itera-
tions. We perform an ablation in Fig. []to study the effect of increasing the iteration gap from 0 to
4, where the clone model gets trained after every ¢ number of iterations. A gap of O means that the

3https ://drive.google.com/drive/folders/1CCMCYVRnvgZig9dYUYO_
BupI8tImGZ2x
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Figure 4: Query Ablation: Sensitivity Plot of clone model accuracy to number of queries. A
significant boost of 6% in the clone model accuracy is evidenced after using class-diversity loss.
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Figure 5: Sensitivity Plot for Class-diversity: Clone model accuracy increases with increase in
diversity coefficient Ay, .
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Figure 6: Iteration Gap ablation: Variation of clone model accuracy with varying gaps of training
for clone and generator.
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Figure 7: Distribution of images over classes: The images generated by DFMS-HL distribute
evenly across all classes.

clone model is trained in every iteration. The results show that decreasing the iterations significantly
impacts the clone accuracy. We perform the same ablation with the generator training gap g by
increasing it from O to 4. We obtain a better accuracy for gap g = 1, where the generator is trained
in alternate iterations. We use synthetic dataset as proxy data and CIFAR-10 as true dataset with 85
epochs of training for this ablation. We report our final results with g and ¢ as 0.

Generation of Diverse Images: The DFMS-HL generator is initialised with a DCGAN generator at
the start of the training process. As the training progresses, the generator learns a diverse distribution
over the different classes of the victim model as shown in Fig. [7] The initial distribution of DCGAN
looks skewed, with very few samples in classes 1, 4 and 6. We also plot the distribution of classes
without the diversity loss, which also look skewed. From the plots, we observe that the class-
diversity loss has a huge impact in making the class distribution uniform. We use synthetic data as
proxy for this ablation with CIFAR-10 as the true dataset on AlexNet.

E.1 IMPACT OF SYNTHETIC DATA

We tried two variants of the synthetic dataset. The first variant, “Large overlapping shapes” con-
tains multiple overlapping shapes on a planar background. The second variant “Small overlapping
shapes” contains multiple shapes of smaller size in an image. Each variant is shown in Fig[3] We
report results obtained by using each of these datasets individually and both combined in Table{6| In
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Figure 8: Distribution of classes for grey vs colour images: The grey synthetic images are more
uniformly distributed across CIFAR-10 classes as compared to coloured images.

Table 6: Impact of Synthetic Data: Clone
Model accuracy with different kinds of syn-
thetic data images used, obtained on a ResNet-

Table 7: Impact of Synthetic Data: Com-
parison for grey vs coloured images used as

proxy data, with AlexNet as the victim model

11{8 KIiCti?é molcliel IOf aCCfacy 93.65%, with of accuracy 80.18% , trained on CIFAR-10, and
esNet-16 as the clone architecture. AlexNet-half as the clone model.

Type of Synthetic Data_ Clone Accuracy Type of Synthetic Data Clone Accuracy

Large overlapplng shapf‘:s 80.34 Grey synthetic images 67.03
Small overlaping shapes 3630 Coloured synthetic images 65.84
Large + Small Combined 85.92 i .

this experiment, we use grey scale images for training. After combining the two datasets, we obtain
a competent accuracy of 85.92%.

We use grey-scale and coloured images individually from the synthetic dataset and observe its impact
on the clone model accuracy with an AlexNet victim network. We find that the grey images are well-
distributed across multiple classes as shown in Fig. [§] This makes grey images a better choice for
initialization. In our method, we train a clone model with a mix of images from the proxy data and
the generator to obtain a good initialisation. From our experiments, we observe that the initial clone
model trained with grey-scale synthetic data achieves an accuracy of 44.57% and the one trained
with coloured images has an accuracy of 37.31%. This shows that grey-scale images lead to a better
initialization for the clone model. Hence, we reported the final results of our method using grey-scale
synthetic images. We also report the results of using the grey-scale and colour images individually
for training in Table|7|and observe that the final clone accuracy in both cases are comparable.

E.2 HYPERPARAMETER TUNING

The diversity loss plays a crucial role in ensuring that the distribution of images from the generator
is class-balanced. The loss formulation of the generator with the class-diversity loss is shown below:

£G = £adv,fak:e + Adiv Lclass,div )

We show the impact of varying the class-diversity loss coefficient A4, in Table (8] The true dataset
is CIFAR-10 and the proxy dataset is 10 random classes from CIFAR-100. We use AlexNet as the
victim architecture and train an AlexNet-half as the clone model for 500 epochs. We observe that
as we increase the diversity loss coefficient, the clone model accuracy increases and reaches the
maximum accuracy of 69.66% at \4;,=500. We note that the proposed method is not sensitive to
minor variations in the hyperparameter \;,, .
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Table 8: Impact of class-diversity loss coefficient )\;;,: Performance (%) of the clone model on
CIFAR-10 dataset trained using 10 random classes of CIFAR-100 as proxy, across variation in A g;,,.
The architecture of victim model is Alexnet and architecture of clone model is AlexNet-half. The
proposed method is not sensitive to minor variations in \g;,,.

Diversity Loss Coefficient Clone Accuracy

100 69.29
200 69.59
300 69.42
500 69.66
700 69.54
1000 69.13

Table 9: Impact of clone architecture on clone accuracy: Clone Accuracy improves with a deeper
CNN network

Clone Model Architecture Clone Accuracy

ResNet-18 83.37
AlexNet 79.37
AlexNet_half 62.64
VGG-11 74.59
VGG-19 78.85
GoogleNet 84.50

E.3 IMPACT OF CLONE ARCHITECTURE

In a practical scenario of Model Stealing, the architecture of the victim model is unknown to the
attacker. Hence, we aim to stage a successful attack in a completely black-box condition. To evaluate
the effectiveness of the attack in different scenarios, we perform an ablation experiment to see if
the choice of the clone model architecture impacts the success of the attack. The clone model
achieves a high accuracy of 83.37% using 10 random classes of CIFAR-100 when the same ResNet-
18 architecture is used for both the victim and the clone. However, using a deeper CNN model such
as GoogleNet gives a boost to the clone accuracy as shown in Table[9] We get lower clone accuracy
for shallower networks such as AlexNet-half and VGG-11. Hence, we observe that it is beneficial
for an adversary to use a deeper CNN architecture for capturing complex features from the victim
model using proxy data.

E.4 IMPACT OF DISCRIMINATOR

The discriminator is an essential component of our approach. Across training epochs, the discrim-
inator learns to differentiate between proxy data and fake images produced by the generator. We
conduct an ablation experiment by disabling the discriminator updates. We use CIFAR-10 as the

m )
i N EM‘

=

—
!

| 40

Epoch 10 Epoch 50 Epoch 90 Epoch 120

Figure 9: Output of DFMS-HL after disabling the discriminator. The images converge to degen-
erate cases after few epochs of training. Synthetic data is used as proxy data with an AlexNet victim
model trained on CIFAR-10 and clone model as AlexNet-half.
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Table 10: Impact of L1 loss formulation on DFMS-SL (Soft-Label Setting): Clone Model ac-
curacy increases by 3% after using L1-loss as compared to standard KL-divergence loss. Synthetic
data is used as proxy for a ResNet-34 victim model trained on CIFAR-10 and ResNet-18 used as
Clone model.

Method Teacher Acc Synthetic
DFME 95.5 88.10
DFMS-SL(L1 loss) 95.5 91.24
DFMS-SL(KL-div loss) 95.5 88.40

Table 11: SVHN as Proxy Data ablation: DFMS-HL achieves an accuracy of 84.83% using SVHN
as Proxy data for a ResNet-34 victim model trained on CIFAR-10. ResNet-18 used as Clone archi-
tecture.

Method Synthetic CIFAR-100 (40C) CIFAR-100 (10C) SVHN

DFME 88.10 88.10 88.10 88.10
DFMS-HL (Ours)  84.51 92.06 85.53 84.83

true dataset and synthetic data as the proxy dataset for this experiment. For Alexnet as victim model
and AlexNet-Half as clone model, DFMS-HL attains an accuracy of 67.03%. After disabling the
discriminator, the clone accuracy drops to 57.06% and the images look degenerate as shown in Fig.
[91 Hence, the discriminator also plays a crucial role in maintaining the distribution of images.

E.5 ImMpACT OF L1 LOSS IN DFMS-SL

Prior works on Knowledge Distillation Hinton et al.| (2015)); [Lopes et al.|(2017);|Nayak et al.|(2019)
train a student model using a KL-divergence loss between the student and teacher predictions. Let
V;(x) and C;(x) be the output of class 7 (out of K classes) of the victim and clone models respec-
tively. The KL divergence loss is written as follows,

(18)

Lxp = ivi(x)log {Vi(x)}
=0

Ci(z)

The DFME approach Truong et al.|(2021) used an L1 loss formulation where they consider the L1
difference between the logits of the clone and the victim model. The logits are estimated by first
taking log, then subtracting the mean of the predictions from it. The loss formulation is written as
follows,

K
Lo =Y V" (@) - " (x) | (19)
i=0
where,
1K
logits
V" (@) = logVi() — < ; logV; () (20)

We evaluate our approach in the soft-label setting with the two loss functions of L1 loss and KL-
divergence loss as shown in Table [[0] We observe an improvement in the clone accuracy using
synthetic data by 3% by using L1 loss for distillation.

E.6 USING UNRELATED DATA AS THE PROXY DATASET

The amount of relatedness between the proxy data and true data is an important factor that influences
the success of model stealing. We perform an ablation study using SVHN as the proxy dataset to
steal a model originally trained on CIFAR-10. Since SVHN is a completely unrelated to CIFAR-10,
it is indeed a difficult setting. Our method DFMS-HL attains a clone accuracy of 84.83% in this
setting. This shows our attack is strong enough to work across a wide range of unrelated proxy
datasets.
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Figure 10: DFMS-HL generator images. The images generated by DFMS-HL generator for
CIFAR-100 10 random classes, 40 unrelated classes and synthetic data as proxy for an AlexNet
victim model of accuracy 80.18% trained on CIFAR-10 and clone model as AlexNet-half.
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Figure 11: DFMS-HL generator images. The images generated by DFMS-HL generator using syn-
thetic colour dataset as proxy for an AlexNet victim model of accuracy 80.18% trained on CIFAR-10
and clone model as AlexNet-half.
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Figure 12: DFMS-HL generator images. The images generated by DFMS-HL generator using
grey-scale synthetic images as proxy for an AlexNet victim model of accuracy 80.18% trained on
CIFAR-10 and clone model as AlexNet-half.
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F GAN GENERATED IMAGES

The images generated from the DFMS-HL GAN are shown in Fig. and Initially, the
generator starts generating images which closely resemble the proxy data. In the synthetic data
experiments (Fig[IT] and [T2), as the training progresses, we observe that the shapes start merging
with each other and start looking more continuous in nature. This makes the image look close
to real images which have an object in front of a background. This shows that the generator starts
capturing properties of the true training data distribution, as they look more intuitive than the original
synthetic images. This helps the clone model learn intrinsic properties of the victim’s training data.

G LIMITATIONS AND FUTURE DIRECTIONS

One of the crucial factors of a successful model stealing attack is its query budget. Our approach
has reduced the number of queries required to 8 million, which is ~ 500X lesser than the query
budget used by past methods of model stealing and knowledge distillation. We believe that reducing
the query budget further would be an interesting area for future research. Another limiting factor for
an adversary is the lack of relevant training data. Our approach addresses this limitation to quite an
extent, as we showcase promising results in a limited data scenario by just using synthetic images.
We believe that our approach would pave the way to address these limitations and develop stronger
attacks and defenses in the area of hard-label model stealing.
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