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ABSTRACT

We consider the problem of machine unlearning to erase target data, which is
used in training but incorrect or sensitive, from a trained model while the train-
ing dataset is inaccessible. In standard unlearning scenario, it is assumed that the
target dataset indicates all the data to be erased. However, this is often infeasi-
ble in practice. We hence address a practical scenario of unlearning from a few
samples of target data, so-called few-shot unlearning. To this end, we devise a
new approach employing model inversion to retrieve the training dataset from the
trained model. We demonstrate that our method using only a subset of target data
outperforms the state-of-the-art methods with a full indication of target data.

1 INTRODUCTION

Unlearning task is to erase a part of the training dataset from a trained model without access to the
training dataset. This is useful when we want to correct some of the mislabeled data in training, or
to erase specific data for privacy concerns. A standard unlearning scenario is to assume that every
target data to be erased is completely indicated (Nguyen et al., 2020; Golatkar et al., 2020; Fu et al.,
2021). In practice, however, it is hard to collect such a complete target data. This motivates us to
address the problem of few-shot unlearning, in which a few examples of the target data are given.

For the few-shot unlearning problem (see Section 2 for a formal formulation), we establish a frame-
work with model inversion (Section 3). To be specific, we first invert the trained model to retrieve
the training dataset, and adjusts the model while interpolating the few samples of target data in the
retrieved data. This approach provides a direct regularization on the dataset to be retained, while ex-
isting methods (Nguyen et al., 2020; Golatkar et al., 2020) use only indirect ones, e.g., regularizing
deviation in model parameter space (Nguyen et al., 2020). Our experiment demonstrates that only
our approach can perform the few-shot unlearning tasks (Section 4.1), and outperform the existing
methods even for the standard unlearning tasks thanks to the direct regularization allowing much
larger change of parameters than the indirect ones (Section 4.2).

1.1 RELATED WORK

Machine unlearning. Unlearning problems have been studied in a wide spectrum of assumptions
on the accessibility to training and target datasets. Given both datasets, the goal of unlearning is
to retrain the model faster than relearning from scratch (Ginart et al., 2019; Bourtoule et al., 2019;
Gupta et al., 2021). However, as it is often limited to obtain training dataset after training, a standard
setup is to assume that only a trained model and target dataset are given (Fu et al., 2021; Golatkar
et al., 2020; Graves et al., 2020; Fu et al., 2021; Nguyen et al., 2020; Tarun et al., 2021; Chundawat
et al., 2022; Baumhauer et al., 2020). Since it is unrealistic to indicate all target data to be erased, we
further consider a realistic scenario with a limited access to target dataset. Similarly, the zero-shot
unlearning problem with no target dataset but target class has been proposed (Tarun et al., 2021;
Chundawat et al., 2022), whereas this cannot erase only a (wrong or sensitive) part of class.
Model inversion. We devise a model inversion mechanism to retrieve the training dataset from
the trained model but also to interpolate the target dataset from a few examples. As our unlearning
scenario possibly includes noisy labels, this is more challenging than model inversion problems in
literature: membership attack Shokri et al. (2017), model inversion Fredrikson et al. (2015). We
hence fully utilize a set of canonical side information: data augmentation and generative model.
This technique itself may be of independent interest for model inversion.
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2 PROBLEM FORMULATION

Standard unlearning. We consider a standard classification dataset D = {di = (xi, yi)}Ni=1,
where xi is input data such as an image, and yi ∈ {1, 2, ...,K} is the corresponding label. Let
fwo(·) ∈ [0, 1]K be a classifier of parameter wo trained on D with the standard cross-entropy (CE)
loss, where a set of input data transformations {ϕℓ}Lℓ=1 are used to augment data as a part of en-
hancing generalization ability, i.e., wo = argminw

∑
(xi,yi)∈D

∑
ℓ CE(fw(ϕℓ(xi)), yi). We denote

De and Dr for a partition of dataset D such that De is data to be erased and Dr = D \De is data to
be retained. Then, given wo and De (without D), the standard unlearning task (Nguyen et al., 2020;
Golatkar et al., 2020) is to obtain wu defined as follows:

wu = argmin
w

∑
(xi,yi)∈Dr

∑
ℓ

CE(fw(ϕℓ(xi)), yi) , (1)

which is the model parameter of the same objective but a different dataset Dr than w. We note that
the main challenge of unlearning task is from the absence of access to the remaining data Dr.
Few-shot unlearning. We further consider a practical constraint that only a few-shot of De is
indicated. More formally, for ρ ∈ [0, 1], let De,ρ be the subset of De, sub-sampled uniformly at
random with ratio ρ such that E [|De,ρ|] ≈ ρ|De|. Then, given wo and De,ρ, we aim at finding the
same unlearning result when we know full De, i.e., wu in equation 1. It is particularly useful to
study the case with small ρ. In such cases, we have Dr,ρ := D \De,ρ ≈ D, and thus the standard
unlearning result with De,ρ should negligibly change from the previous model wo by definition,
c.f., Bayesian (Nguyen et al., 2020) in Figure 1. The few-shot unlearning task needs to address the
challenges of the standard unlearning task and, in addition, to interpolate the dataset to be erased
from the few-shot De,ρ.

3 PROPOSED METHOD

For the few-shot unlearning, we first perform the model inversion to approximate D from wo. Let D′

denote the approximation of D. The standard unlearning can be transformed into a relearning task
once one can filter out an interpolation of De from D′. We note that our approach overcomes the
fundamental limit of previous methods Nguyen et al. (2020); Golatkar et al. (2020), which regularize
the deviation in parameter space in order to retain Dr. For instance, Nguyen et al. (2020) assuming
Gaussian prior introduces regularizer ∥wo − wu∥ on the deviation from wo in parametric space.
However, this can be problematic when De is large, or the behavior of fw is highly sensitive to w.

For the model inversion, we first observe that if input x is used in training, the output fwo(x) is
concentrated on the one or few classes labeled in the training dataset (which may contain noisy
labels). We hence can reveal training data by minimizing the entropy H of fwo(x) over x. However,
the model inversion problem is clearly under-determined. We hence exploit prior knowledge given
in generative model G and data augmentation ϕℓ’s. We can narrow down searching space via the
generative prior G mapping a random noise z of trivial distribution to a point in the approximated
domain of D, i.e., searching over z instead of x. In addition, the data augmentation used in training
can further introduce a constraint to be verified by a training instance: the consistency of output of
the model after the augmentation. However, a target sample may have high entropy due to noisy
labeling. We hence employ a classifier to determine whether a sample is from target dataset, or
not. To be specific, we approximate the distribution of De,ρ by multivariate normal distribution on a
feature space of wo, and denote the likelihood of an input x belonging to De by fe(x). In summary,
the approximation D′ of D is described as follows:

D′ ={(G(z), fwo(G(z))) : H(fwo(ϕℓ(G(z)))) < t ∀ℓ} ∪ {(G(z), f̄wo(G(z))) : fe(G(z)) > t} ,
(2)

where we use the pseudo label fwo
(G(z)) for G(z) having low entropy, and a modified pseudo label

f̄wo
, which has zero at the label of De,ρ, for G(z) similar to inputs of De,ρ.

We generate samples from pre-trained generator G and do data augmentation in given {ϕℓ}Lℓ=1.
If the entropy of the sample is less than threshold t and the label is consistent on the augmented
samples, the sample is added to D′. Moreover, we add f̄wo

, the sample with the label softmax of
fwo without the output of unlearned label if the binary classifier classifies the sample as in noisy
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(b) baseline model and unlearned model results

Figure 1: Moon classification example demonstrating the limitation of previous methods on few-
shot unlearning setting. Figure 1a visualizes 100 data points of the moon dataset on input dimension
R2, where each point of binary label y ∈ {0, 1} is shown in blue if y = 1, and yellow if y = 0.

Table 1: KL divergence of unlearned models against the baseline model and the oracle.

Ours EUBO RKL
λ - 10−5 10−9 0 10−5 10−9 0

vs baseline 0.306 0.004 0.012 0.008 0.003 0.007 0.012
vs oracle 0.015 0.394 0.313 0.340 0.432 0.348 0.304

parts. This algorithm can generate an dataset D′ approximating the training dataset. We then obtain
an approximation of retaining data Dr by deleting D′

e in D′ from the binary classifier, where the
pseudo code of detailed procedure is described in appendix A.

4 EXPERIMENT

4.1 SYNTHETIC DATASET

We first perform an unlearning on moon classification task, described in Figure 1a, to compare the
existing method built on Bayesian neural network (Nguyen et al., 2020). For a fair comparison, we
use the same setting of (Nguyen et al., 2020). However, we aim to unlearn 20 points (red crosses
in Figure 1a) of the yellow class when only 5 points are randomly chosen and indicated as few
examples of target data, i.e., ρ = 0.25. As shown in Figure 1b, our few-show unlearning method
(with 5 targets) produces a classifier almost identical to oracle (with 20 targets), while Bayesian
unlearning method (Nguyen et al., 2020) fails at the few-shot unlearning.

Table 1 quantifies the comparison of Figure 1 by evaluating KL divergence between the outputs
of each unlearning method and reference model (the baseline wo before unlearning; and the oracle
wu after ideal unlearning) at input points uniformly sampled, i.e., better to have larger divergence
to baseline and smaller divergence to oracle. Table 1 clearly shows the superiority of our method
over all the variants of the Bayesian unlearning method (Nguyen et al., 2020) with different hyper-
parameter λ and submodules: i) evidence upperbound (EUBO); and ii) reverse-KL (RKL).

4.2 REAL DATASET

We also consider two different unlearning scenarios in image classification with the MNIST dataset:
i) we aim to unlearn the model trained with noisy labels in 4.2.1; and ii) we aim to unlearn the model
trained with sensitive information in 4.2.2, which needs to be removed. For both scenarios, we use
LeNet5 (LeCun et al., 1998) as a backbone model and DCGAN (Radford et al., 2015) pretrained
by MNIST as a generator. We use a modified MNIST for each experiment, with two data aug-
mentations: rotating 30 degrees clockwise and counterclockwise. Each experiment is repeated with
five random seeds and reported with the mean and standard deviation on unlearning and few-shot
unlearning when we can access to all data points in De and only 3% (ρ = 0.03) of them. We use
the same approach for an oracle unlearning in 4.1 and compare our method with the oracle and the
Fisher in (Golatkar et al., 2020).

4.2.1 UNLEARNING NOISY LABEL

To simulate the unlearning with the noisy label, we focus on the seven. People write seven in
different ways such as 7 and 7 (crossed seven), which often confuses the people who are not familiar
with the notation. From an observation that a standard classification model often classifies 7 as 2 or
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Table 2: Accuracy of unlearned models compared among baseline, oracle, ours and Fisher (Golatkar
et al., 2020) on the ordinary unlearning and few-shot unlearning setting with the MNIST dataset. ⋆
is the result without augmentation.

(a) Unlearning mislabeled 7

METHOD ACCURACY ACCURACY ON 7

BASELINE 96.8± 0.45 13.4± 0.23
ORACLE 97.9± 0.11 89.9± 0.03

OURS 97.0± 0.29 91.8± 0.02
FISHER 97.7± 0.05 42.1± 5.64

ORACLE(3%) 96.9± 0.25 30.8± 0.15
OURS(3%) 96.9± 0.25 81.1± 0.12

FISHER(3%) 97.7± 0.00 22.5± 1.48
OURS(3%)⋆ 96.1± 0.62 19.0± 13.2

(b) Unlearning the entire class of 9

METHOD
ACCURACY
WITHOUT 9

ACCURACY
OF 9

BASELINE 97.9± 0.11 96.3± 0.92
ORACLE 97.9± 0.19 0.0± 0.00

OURS 97.4± 0.15 0.0± 0.00
FISHER 94.4± 1.19 88.6± 3.05

ORACLE(3%) 97.8± 0.19 95.9± 1.13
OURS(3%) 97.4± 0.24 0.0± 0.00

FISHER(3%) 95.0± 0.42 89.8± 1.74

3 when they learn without 7 , we modify the labels of the MNIST to simulate the label noise. To be
specific, we randomly relabel 200 of the 7 in the MNIST into 2, 3, and 7. As a baseline model, we
train the model with the relabeled MNIST, and unlearned models are unlearned mislabled 7 from
the basline model.

Table 2a shows the accuracy of the models on the full test set and 7 before and after unlearning.
After unlearning with the entire data points with incorrect labels, the proposed model outperforms
the fisher method on 7 ’s, while having a small accuracy drop on the full test set. In few-shot
unlearning with only 3% of incorrect labels, the proposed method outperforms both the oracle and
fisher method by a large margin on 7 ’s. The results of unlearning without augmentation showed
that both the performance of the overall model and the target data were poor. The reason is that
there were many cases in which different labels were used when softmax without the output of an
unlearned label to suspected of being noisy-labeled data.

4.2.2 UNLEARNING PRIVATE INFORMATION

In the second scenario, we aim to remove an entire class from the trained model under the assumption
that the class represents a certain person or private information. To simulate a such scenario, we
unlearn the class 9 from the MNIST dataset. From the unlearning, we expect the model accuracy on
the class of 9 drops significantly while having a compatible accuracy for the remaining classes. For
this experiment, we use the small-sized MNIST that contains the first 10,000 training samples. The
baseline classifier is trained on the small MNIST.

Table 2b shows the results of the unlearning. The baseline model has high accuracy in all classes.
The fisher method fails to unlearn the class with both the full dataset and a few samples. The oracle
achieves zero accuracy on the target class when the full dataset is available and failed to unlearn
with only 3% of the dataset. Our method successfully unlearned the target class clearly with the full
and partial datasets, while having a small decrease on the other classes.

5 CONCLUSION

We have proposed a few-shot unlearning method to erase a target dataset from a trained model given
a few target examples. Our method consists of two parts: inverting model to retrieve training dataset,
and relearning with retrieved dataset after excluding target dataset. The model inversion is special-
ized for unlearning (or noisy label) scenarios, in which we cannot presume that a training example
has low entropy on the trained model. We demonstrate that our method using only a subset of target
data can achieve similar performance to the state-of-the-art methods with a full indication of target
data. We use a pre-trained generative model G, which is possibly unavailable in practice. Hence,
it is an interesting future work to consider the case without pre-trained generative prior, in which
we need to train a generator from fwo as in Yoo et al. (2019). In addition, we consider unlearning
for classification, while it is also interesting to consider an extension for regression, which seems
doable by replacing the entropy with variance for certainty estimation in model inversion.
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A PSEUDO CODE OF ALGORITHM

Algorithm 1 Data Generation and Deletion

Input: classifier: c,
generator: G,
unlearn data: De,p,
augmentation: ϕ1, ϕ2, ..., ϕk

threshold: t, t′
binary classifier: fe

Output: approximated dataset: D′

D′ ←− []
Generation

repeat
Sample random noise z.
Generate X = G(z).
Augment X by ϕ1, ϕ2, ..., ϕk

m←− argmax
class

c(X)

if c(X)[m] ≥ t and c(ϕj(X))[m] ≥ t for all j then
add (X, c(X)) to D′

end if
if fe(G(z)) > t′ then

s←− softmax of c(X) without labels of De,p

m←− argmax
class

s

if s[m] ≥ t then
add (X, s) to D′

end if
end if

until num of each class data in D′ == N
Deletion

repeat
Get data X from D′

if fe(G(z)) > t′ then
if argmax

class
c(X) == labels of De,p then

delete X from D′

end if
end if

until visit all data points in D′
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