Published at ICLR 2022 Workshop on Socially Responsible Machine Learning

DATA AUGMENTATION VIA WASSERSTEIN GEODESIC
PERTURBATION FOR ROBUST ELECTROCARDIOGRAM
PREDICTION

Jiacheng Zhul’: Jielin Qiul’* , Zhuolin Yangz, Michael Rosenberg3, Emerson Liu*, Bo Li?, Ding Zhao!
!Carnegie Mellon University, 2University of Illinois at Urbana-Champaign,
3University of Colorado School of Medicine, *Allegheny General Hospital

ABSTRACT

There has been an increased interest in applying deep neural networks to automat-
ically interpret and analyze the 12-lead electrocardiogram (ECG). However, the
imbalance and heterogeneity of real-world datasets place obstacles to the efficient
training of neural networks. Moreover, deep learning classifiers could be vul-
nerable to adversarial examples and perturbations and could lead to catastrophic
outcomes for clinical trials and insurance claims. In this paper, we propose a
physiologically-inspired data augmentation to improve the performance, general-
ization, and to increase the robustness of ECG prediction models. We obtain aug-
mented samples by perturbing the data distribution towards other classes along
the geodesic in Wasserstein space. To better utilize the domain knowledge, we
design a ground metric that recognizes the difference between ECG signals based
on physiological features. Learning from 12-lead ECG signals, our model is able
to distinguish five categories of cardiac conditions. Our results demonstrate im-
provements in accuracy and robustness reflecting the effectiveness of our data
augmentation method.

1 INTRODUCTION

The 12-lead Electrocardiogram (ECG) is the foundation for cardiology and electrophysiology. ECG
provides unique information about the structure and electrical activity of the heart and systemic
conditions, through changes in timing and morphology of the recorded waveforms. Achievement
of reliable ECG reading would be a significant achievement, such that critical and timely ECG in-
terpretations of acute cardiac conditions can lead to efficient and cost-effective intervention. With
the development of machine learning and deep learning methods, it may be possible to identify
additional previously unrecognized signatures of disease. Many methods have been explored for
diagnosing physiological signals, i.e., EEG, ECG, EMG, etc (Liu et al., [2019; |Shanmugam et al.,
2019; |Cote-Allard et al) [2019). Due to limited data and sensitive modeling frameworks, the diag-
nosis results are not always robust. Also, deep learning models for ECG data have been shown to be
susceptible to adversarial attack (Han et al.||2020; |Hossain et al., 2021b; |Chen et al.| 2020).

To tackle the problem caused by adversarial data distributions, people have proposed both empir-
ical and certified robust learning approaches, such as adversarial training (Madry et al., [2017) and
certified defense approaches (Cohen et al.,[2019; |Li et al.| 2020; [2021). Despite conventional deep
learning algorithms, since different categories of ML algorithms are being deployed to safety-critical
domains, there is a need for provable robustness guarantees for different ML algorithms, such as en-
semble learning (Yang et al.| [2021bga), reinforcement learning (Wu et al., 2021bjal), and federated
learning (Xie et al.| 2021} Xie et al.).

It has already been shown that data augmentation strategies (Rebuffi et al., [2021afb; |Gao et al.
20205 |Volpi et al., 2018; |[Ng et al., 2020) or more training data (Carmon et al., 2019) can improve
the performance and increase the robustness of deep learning models. Specifically, augmenting data
with random Gaussian noise (Cohen et al.,|2019) or transformations (Li et al.,[2021) yields certifiable
smoothed models. Mixup methods (Zhang et al., 2018} |Greenewald et al., 2021), which augment
data with weighted averages of training points, also promote the certifiable robustness (Jeong et al.,
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Figure 1: Our data augmentation creates perturbed samples toward the closest other-class samples.
The perturbation lies on the geodesic between two distributions.

2021). However, different types of data usually contain domain-specific properties. In particular, the
temporal structure in data such as audio data (Yang et al., [2018) and natural language (Wang et al.,
2021)) should not be ignored when performing robust training.

In this paper, we propose a new data augmentation method from a probability perspective. We
perturb the data distribution towards other classes along the geodesic in a Wasserstein space. Also,
the ground metric of this Wasserstein space is computed via a set of physiological features so that
the perturbation lies on a manifold that exploits the physiology properties of ECG data. We employ
a Multi-Feature Transformer as base classifier to evaluate the performance of our proposed method.

2 RELATED WORK

ECG deep learning and robustness With the development in machine learning, many models
have been applied to ECG disease detection (Kiranyaz et al.,2015; Nonaka & Seita, [202 1}; Khurshid
et al.,|2021; Raghunath et al., 2021} Giudicessi et al., 2021} |Strodthoff et al.,|2021). The transformer
model has recently been adopted in several ECG applications, i.e., arrhythmia classification, abnor-
malities detection, stress detection, etc (Yan et al., [2019; [Che et al.l 2021} |Natarajan et al., 2020;
Behinaein et al., 2021}, |Song et al., [2021; Weimann & Conrad, 2021). Robustness of ECG has re-
cently drawn more attention. [Venton et al.|(2021]) generated clean and noisy ECG datasets to test the
robustness of different models. [Hossain et al.| (2021a) proposed Conditional GAN, which claimed to
be robust against adversarial attacked ECG signals. [Venton| (2021)) explored the impact of different
physiological noise types, and signal-to-noise ratios (SNRs) of noise.

Data augmentation for sequential data |[Zhang et al.|(2018) proposed Mixup, an effective model
regularizer for data augmentation that encourages the model to behave linearly in-between training
examples, which has been applied in sequential data. It generates out-of-manifold samples through
linearly interpolating inputs and their corresponding labels of random sample pairs. [Zhang et al.
(2020) augmented the queried samples by generating extra labeled sequences. |Guo et al.| (2020)
created new synthetic examples by softly combining input/output sequences from the training set.
Guol (2020) embraced nonlinear interpolation policy for both the input and label pairs, where the
mixing policy for the labels is adaptively learned based on the mixed input. However, the data
augmentation for electrocardiograms has not been well explored.

3 METHODS

3.1 ROBUST DEEP LEARNING WITH DATA AUGMENTATION

It is imperative to obtain a deep learning model that is operational in the presence of potentially
adversarial shift in data distribution. Through the framework of distributional robust optimization
(Weber et al.l 2022)), we denote P as the joint data distribution over features X € X" and labels
Y € Y, and let hy : X — ) be a family of predictive function parameterized by 6. Given a loss
function ! : ) x Y — R, we wish to solve the following optimization problem:

min sup E(X,Y)NQ[l(hG(X)vy)]v @)
9 Qeup

where Up C P(Z) is a set of probability distribution. Intuitively, this objective finds the worst-case
optimal predictor h; when the data distribution P is perturbed towards some distribution Up.
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A promising way to enable robust learning is to provide adversarially perturbed samples with data
augmentation (Volpi et al.,2018; |Rebutffi et al.,2021c). Consider we can rewrite the joint data distri-
bution P(X,Y") as the product of conditional distributions P(X,Y) = P(X|Y)P(Y). Also, since
we focus on the k-classification problem, we denote Py(X) = P(X|Y}) as the data distribution
of one class k. When doing the data augmentation, we want to perturb the data distribution P;(X)
towards another class P;(X),¢ # j as we believe it is those data samples lie on the geodesic that
serve as adversarial samples (Courty et al., 2017; Moosavi-Dezfooli et al.,[2017).

3.2 DATA AUGMENTATION BY PERTURBATION ON THE GEODESIC

The Monge formulation of optimal transport finds a map 7" : R? — R than transports a distribution
P towards Q:

T —argmf/”x— )IPdP(z), 2

where a minimizer 7™ is the optimal transport map such that T, P = @), where T P is the pushfor-
ward of P. Given distributions P and @, if T* exits, then map T;(x) = (1 — t)x + tT*(x) gives the
path of a particle of mass at x and P; = Ty P is the geodesic connecting P to Q).

However, the minimizer might not always exit. Thus we introduce Kantorovich that finds an optimal
coupling 7 of given measures p € M(Cs),v € M(C;) to minimize

inf / d(cs, ct) dP(cs, ct), subject to P = {P VG P =GP = y} 3)
Cs XC

well

where C, and C; are the source and target context space, d(-, +) : Cs X C; — RTis a distance function,
s, ~C¢ are projections from Cs x C; onto C, and C; respectively. In a more general case, to obtain
the perturbation between P; and P; corresponds to the problem of Wasserstein barycenter, which
interpolate between distributions along the geodesic

Py = inf (1 — )W (P;, P,) + aW (P., P;) where a € (0, €) 4)
Pa

Then, the augmented samples can be obtained (Z;,y;) ~ P;;. We will show an algorithmic deriva-
tion of this augmentation procedure leads to a similar framework with mixup guided by batch op-
timal transport, but we propose to better exploit the data manifold structure with a user specified
ground metric based on (time domain and frequency domain) physiological features.

3.3 ALGORITHM

In practice, we only observe discrete training samples that represents empirical distribution of P;

and Pj. Consider X; = {xi}7, and X; = {x]},”, are two set of features from class i and j
. .. . n;

respectively. The empirical distributions are written as P; = = Y, pid, »i and P = =32 p o)

where J,, is the Dirac function at location z € €2, pf and p{ are probability mass associated to the
sample. Then the Wasserstein distance between empirical measures Eq.(3) becomes

= arg{rneilr_ll Z C(x}, x)m k- 5)
I=1,k=1
In the special case where the ground metric C' (+,-) is 12 norm, we can follow the barycentric mapping
to obtain the pushforward X; = T}’ ;# P; = n;m*X;. Then we can explicitly perturb the X,; towards
X, by:
Xl‘j = (1 — Ot)Xi + OtXi, 6)
When selecting a batch of samples, our method interpolate the class ¢ samples with a set of pushfor-
ward samples X;, rather than X ;, which better exploit the geometric structure of data distribution.

4 RESULTS

We carried out experiments on the PTB-XL dataset (Wagner et al.| [2020), which contains clinical
12-lead ECG of 10-second length. The augmented data generated by our proposed method is used
to improve classification robustness among different categories. In specific, (1) In the augmentation
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procedure, we randomly sample a batch of ECG signal from both the source and target categories
and then use formulation in Equation (6)) to get the barycentric mapping samples. (2) We mix the
original data and augmented data and then process them for the MF-Transformer. (More details are
shown in the Appendix.) Examples of augmented data are shown in Fig. [2] where we can find the
augmented data preserves the semi-periodic nature, and the results of each lead fit well with the
ECG pattern compared with original ECG signals by domain knowledge.
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Figure 2: Examples of 10-s 12-lead original ECG signals and augmented ECG 51gnals within differ-
ent conditions. Top row: original signals; Bottom row: augmented signals.

To evaluate our method, we used a MF-Transformer model as classifier (details of the model are
introduced in the Appendix). We trained the MF-Transformer model with (1) original PTB-XL
data, (2) oversampling augmented data, and (3) our augmented data. Table [2and Fig. [3] show that
compared with baseline results and oversampling results, our augmented method not only improved
the classification accuracy of each category but also improved the average classification result from
71.80% (original) and 72.05% (oversampling) to 75.82% (ours), which demonstrated the robustness
improvement. (More details are introduced in the Appendix)

Table 1: Comparison of classification results by different data augmentation methods.

Methods Average Accuracy | Fl-score
MF-Transformer-Raw 71.80 % 0.669
MF-Transformer-Oversampling 72.05 % 0.717
MF-Transformer-Ours 75.82 % 0.757

Table 2: Comparison of the AUROC result on the clean test set and adversarial test set. The task is
to diagnose Conduction Disturbance (CD). The quantitative results demonstrate our method helps
train a more robust predictive model. We use PGD attack to generate adversarial samples.

Conduction Disturbance Clean AUROC | ¢ =0.001 | ¢ =0.002
ME-Transformer-Raw 0.816 0.816 0.762
MF-Transformer-Oversampling 0.879 0.822 0.763
TaskAug|Raghu et al.| (2022) 0.831 - -
MF-Transformer-Ours 0.891 0.838 0.770
Confusion Matrix Confusion Matrix Confusion Matrix
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Figure 3: Confusion matrix of prediction results on (a) original data; (b) oversampling data; and (c)
our augmented data.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new method for electrocardiograms data augmentation. We augmented
the minority category from the majority category with Wasserstein Geodesic Perturbation. We
showed that after data augmentation, there are both accuracy and robustness improvements on the
classification results over five ECG categories, which demonstrate the effectiveness of our method.
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A DATA EXTRACTION

We carried out the experiments on the PTB-XL datasetWagner et al.| (2020), which contains clinical
12-lead ECG signals of 10-second length. There are five conditions in total, which include Normal
ECG (NORM), Myocardial Infarction (MI), ST/T Change (STTC), Conduction Disturbance (CD),
and Hypertrophy (HYP). The waveform files are stored in WaveForm DataBase (WFDB) format
with 16-bit precision at a resolution of 1, V/LSB and a sampling frequency of 100Hz.

First, we read the raw data by wfdb libraryﬂ and perform Fast Fourier transform (fft) to process the
time series data into the spectrum, which is shown in Fig. ] Then we perform n-points window
filtering to filter the noise and adopt notch processing to filter power frequency interference (noise
frequency: 50Hz, quality factor: 30), where the filtered result after n-points window filtering and
notch processing is shown in Fig. [5]

Original ECG Signal Original ECG Signal’s Spectrum Notched ECG Signal Notched ECG Signal’s Spectrum
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Figure 4: ECG data in time and spectrum. Figure 5: ECG filtered data.

We then detect the R peaks of each signal by ECG detectorsﬂ so the data can be sliced at the fixed-
sized interval on both sides to obtain individual beats. The examples of detecting R peaks in ECG
signals and divided pieces are shown in Fig. [6and Fig. [7] respectively.

R Peaks Detection in ECG Signals
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Figure 7: Extracted ECG pieces divided by R
Figure 6: Detecting R peaks in the ECG signals. peaks.

To reduce the dimension of ECG features, we downsample the processed ECG signals to S0Hz.
Then we extract more time domain features and frequency domain features to better represent the
ECG signals. The time-domain features include: maximum, minimum, range, mean, median, mode,
standard deviation, root mean square, mean square, k-order moment and skewness, kurtosis, kurtosis
factor, waveform factor, pulse factor, margin factor. The frequency-domain features include: fft
mean, fft variance, fft entropy, fft energy, fft skew, fft kurt, fft shape mean, fft shape std, fft shape
skew, fft kurt, which are shown in Table

There are five categories in total, including NORM, MI, STTC, CD, and HYP. In a balanced dataset,
each category should occupy the same proportion. In the original dataset, the number of patients in
the NORM category is much larger than the others. After dividing the ECG signals into individual
beats, the portion of each category changed due to heartbeat variance among people. However, if
we count the segmented ECG beats and compare different categories’ data, the imbalance issue still
exists, which is shown in Table |4 From Table |4, we can find out that NORM category and CD
category is much larger than the other three categories, making the dataset unbalanced.

B MULTI-FEATURE TRANSFORMER

For the classification model, we take advantage of the transformer encoder [Vaswani et al| (2017),
and proposed a Multi-Feature Transformer (MF-Transformer) model. The transformer is based on
the attention mechanism [Vaswani et al| (2017)) and outperforms previous models in accuracy and
performance. The original transformer model is composed of an encoder and a decoder. The encoder
maps an input sequence into a latent representation, and the decoder uses the representation along

"https://pypi.org/project/wfdb/
Zhttps://pypi.org/project/py-ecg-detectors/
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Table 3: ECG signal statistical features in frequency domain.

Feature Symbol Formula
N
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Table 4: Statistics of the data.

Category | Patients | Percentage | ECG beats | Percentage
NORM 9528 34.2% 28419 36.6%
MI 5486 19.7% 10959 14.1%
STTC 5250 18.9% 8906 11.5%
CD 4907 17.6% 20955 27.0%
HYP 2655 9.5% 8342 10.8%

with other inputs to generate a target sequence. Our model is mostly based on the encoder, since we
aim at learning the representations of ECG features, instead of decoding it to another sequence.

Positional
_ECG Encodng m———————— ——— —— — — — 1
Signals
| | |
| Add Add | Linear
Time Input Multi-head Feed . .
Features Embedding " Attention & Forward I & R
| Norm Norm I Softmax
e o o e — — — — — — — — — — —— —
Frequency
Features Attention Model x N

Figure 8: The architecture of the Multi-Feature Transformer model.

The input for the Multi-Feature Transformer is composed of three parts, including ECG raw features,
time-domain features, and frequency domain features. The detailed feature pre-processing steps are
introduced in Section ??. First, we feed out the input into an embedding layer, which is a learned
vector representation of each ECG feature by mapping each ECG feature to a vector with continuous
values. Then we inject positional information into the embeddings by:

PE(pos,2i) = sin <pos / 100002i/dm0de1>
' )
PE(pos 2i+1) = cos <p05/1000022/dmudcl)

The attention model contains two sub-modules, a multi-headed attention model and a fully con-
nected network. The multi-headed attention computes the attention weights for the input and pro-
duces an output vector with encoded information on how each feature should attend to all other
features in the sequence. There are residual connections around each of the two sub-layers followed
by a layer normalization, where the residual connection means adding the multi-headed attention
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output vector to the original positional input embedding, which helps the network train by allow-
ing gradients to flow through the networks directly. Multi-headed attention applies a self-attention
mechanism, where the input goes into three distinct fully connected layers to create the query, key,
and value vectors. The output of the residual connection goes through a layer normalization.

In our model, our attention model contains N = 5 same layers, and each layer contains two sub-
layers, which are a multi-head self-attention model and a fully connected feed-forward network.
Residual connection and normalization are added in each sub-layer. So the output of the sub-layer
can be expressed as:

Output = LayerNorm(z + (SubLayer(z))) (8)
For the Multi-head self-attention module, the attention can be expressed as:
attention = Attention(Q, K, V) 9)

where multi-head attention uses h different linear transformations to project query, key, and value,
which are @), K, and V, respectively, and finally concatenate different attention results:

MultiHead(Q,K,V) = Concat(heads, ..., head, )W ©° (10)
head; = Attention(QWS, KWX VW) (11)
where the projections are parameter matrices:

WiQ c Rdmodsl dk’ WiK c Rdmodel dg.

wV c Rdmodel dv7 WO c thuxdmdel (12)
where the computation of attention adopted scaled dot-product:
Atention(@, K. V) = softmax( 25 )v 13
ention s £y = solItmax
Vi

For the output, we use a 1D convolutional layer and softmax layer to calculate the final output.

B.1 OPTIMAL TRANSPORT BASED DATA AUGMENTATION

We use optimal transport to push forward samples from the distribution of a majority class to a
minority class. We expect optimal transport to exploit global geometric information so that the
synthetic samples match the real samples. In specific, we denote the data from a majority class to
be Xy = {zs1,...,Ts.n, } € (s and the minority class data to be Xy = {x4.1,...,Tt.n, } € Q. We
assume that they are subject to distributions X, ~ s and Xy ~ 1/, respectively, and we associate
empirical measures to data samples:

Ng Nt
fis =Y Daibe,, 0t =Y Dribs, ., (14)
=1 =1

where 9, is the Dirac function at location = and p; are the probabilities masses associated to the
samples. Solving the optimal transport objective give us the coupling:

ns N
T :arggneiﬁlZZm’jCM +vH(m), (15)

1=15=1
where C; ; = |lz; — x;||3 is a cost matrix, v is a coefficient, and H(w) = > m; ;logm; ; is the

negative entropy regularization that enable us to employ the celebrated Sinkhorn algorithm |Cuturi
(2013). The solution to problem (I5) actually express the barycentric mapping
jjs,i = arg min Tr*(iaj)c(x7xt,j)a (16)

e
t =

where x4 ; is source sample and Z, ; is the resulting mapped sample. When using /o, norm as cost
function, the barycenter has a convenient format that maps the source samples into the convex hull
of target samples as Xg = n,7m*Xy.
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B.2 HEART DISEASE DETECTION

To evaluate our method, we used a MF-Transformer model as classifier. We trained the MF-
Transformer model with (1) original PTB-XL data, (2) oversampling augmented data, and (3) our
augmented data.

First, we trained the MF-Transformer model with the original PTB-XL data to obtain the baseline
performance for different categories. Second, we used the oversampling strategy to augment the
ECG signals for the minority categories, then we trained the MF-Transformer model from scratch
to obtain the performance by oversampling data augmentation method. Third, we augmented the
data with our data augmentation method, and trained the MF-Transformer model from scratch again
to evaluate the performance of our method. Note that the augmented data is only used for training,
and the testing set remains the same as for all the experiments, which only contain the real-world
ECG signals to have a fair evaluation of the proposed method. The training and testing splitting
strategy is the same as in|Wagner et al.| (2020); Strodthoff et al.|(2021). The experiments are carried
out on four Nvidia Tesla V100 GPUs. Tabele [2|and Fig. [3|show that compared with baseline results
and oversampling results, our augmented method not only improved the classification accuracy of
each category but also improved the average classification result from 71.80% (original) and 72.05%
(oversampling) to 75.82% (ours). Each category’s performance comes to be more balanced, showing
the robustness improvement compared with the baseline results and oversampling results in Fig. [3{(a)
and Fig. [3](b).

C MORE RELATED WORK

Traditional methods of data augmentation include sampling, cost-sensitive methods, kernel-based
methods, active learning methods, and one-class learning or novelty detection methods (He & Gar-
cia, 2009). Among them, sampling methods are mostly used, including random oversampling and
undersampling, informed undersampling, synthetic sampling with data generation, adaptive syn-
thetic sampling, sampling with data cleaning techniques, cluster-based sampling method, and in-
tegration of sampling and boosting. But traditional methods may introduce their own set of prob-
lematic consequences that can potentially hinder learning (Holte et al., |[1989; [Mease et al., 2007;
Drummond & Holte, [2003), which can cause the classifier to miss important concepts pertaining
to the majority class, or lead to overfitting (Mease et al.l 2007; [He & Garcia, [2009), making the
classification performance on the unseen testing data generally far worse.

One motivation for data augmentation is to solve the data imbalance in ECG data. Martin et al. tried
to use oversampling method to augment the imbalanced data (Martin et al.| 2021)). |ClementVir-
geniya & Ramaraj| (2021) also addressed the ECG data imbalance problem, where instead of using
synthetic models such as synthetic minority oversampling technique (SMOTE), SMOTEBoost, or
DataBoostIM, they tried to feed the data into the adaptive synthetic (ADASYN) He et al.| (2008)
based sampling model, which utilized a weighted distribution for different minority class samples
depending upon the learning stages of difficulty. [Liu et al.[(2021) augmented the ECG data by using
band-pass filter, noise addition, time-frequency transform and data selection. The methods above
showed that balanced dataset performance is superior than unbalanced one.

Optimal Transport (OT) is a field of mathematics that studies the geometry of probability spaces
(Villani, 2003)). The theoretical importance of OT is that it defines the Wasserstein metric between
probability distributions. It reveals a canonical geometric structure with rich properties to be ex-
ploited. The earliest contribution to OT originated from Monge in the eighteenth century. Kan-
torovich rediscovered it under a different formalism, namely the Linear Programming formulation
of OT. With the development of scalable solvers, OT is widely applied to many real-world problems
(Zhu et al., |2021; |Flamary et al., 2021)).

With the development in machine learning, many models have been applied to ECG disease detec-
tion Kiranyaz et al.|(2015); Nonaka & Seital (2021); |Khurshid et al.[(2021); Raghunath et al.|(2021));
Giudicessi et al.|(2021)); |Strodthoff et al.|(2021); |Qiu et al.|(2022). |Al-Zaiti et al.| (2020) predicted
acute myocardial ischemia in patients with chest pain with a fusion voting method. Acharya et al.
proposed a nine-layer deep convolutional neural network (CNN) to classify heartbeats in the MIT-
BIH Arrhythmia database (Acharya et al., 2017; [Moody & Markl, [2001). [Shanmugam et al.| (2019)
estimate a patient’s risk of cardiovascular death after an acute coronary syndrome by a multiple in-
stance learning framework. Recently,Ravanelli & Bengio|(2018)) proposed models based on SincNet
and used entropy-based features for cardiovascular diseases classification Smigiel et al.| (2021)).
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ECG signal can be considered as one type of sequential data, and Seq2seq models (Sutskever et al.,
2014])) are widely used in time series tasks. Since the attention mechanism was proposed (Bahdanau
et al., 2015)), the Seq2seq model with attention has been improved in various tasks, which outper-
formed previous methods. Then Transformer model [Vaswani et al| (2017) was proposed to solve
the problem in the Seq2Seq model, replacing Long Short-Term Memory (LSTM) models with an
attention structure, which achieved better results in translation tasks. The transformer model has
also recently been adopted in several ECG applications, i.e., arrhythmia classification, abnormalities
detection, stress detection, etc (Yan et al., [2019} |Che et al.l 2021} |[Natarajan et al., [2020; [Behinaein
et al., 2021} |Song et al., 2021; [Weimann & Conrad, [2021)). But those models take only ECG tem-
poral features as input and haven’t considered the frequency domain features. To take advantage of
multiple features across time and frequency domains, we proposed a Multi-Feature Transformer as
our classification model to predict the heart diseases with 12-lead ECG signals.
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