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ABSTRACT

In this work, we address the problem of learning provably stable neural network
policies for stochastic control systems. While recent work has demonstrated the
feasibility of certifying given policies using martingale theory, the problem of how
to learn such policies is little explored. Here, we study the effectiveness of jointly
learning a policy together with a martingale certificate that proves its stability
using a single learning algorithm. We observe that the joint optimization problem
becomes easily stuck in local minima when starting from a randomly initialized
policy. Our results suggest that some form of pre-training of the policy is required
for the joint optimization to repair and verify the policy successfully.

1 INTRODUCTION

Reinforcement learning (RL) has achieved impressive results in many domains in which the goal
is to optimize expected reward (Sutton & Barto, 2018). This has fueled the desire to use RL in
robotics and for control of non-linear systems. However, using RL in safety-critical domains such
as autonomous driving requires formal safety guarantees as consequences of unsafe behavior could
be disastrous (Amodei et al., 2016). Verification of systems with learned components and learning
with safety guarantees have thus become active research topics (García & Fernández, 2015).

In this work, we consider the problem of learning stabilizing policies for stochastic control systems.
Stability is one of the most basic and important safety properties of systems. It requires a system to
be able to reach and stay within a region that is known to be safe, i.e., a stabilizing region, from any
system state via the means of a stabilizing policy (Lyapunov, 1992). For instance, if a self-driving
car were to drive at a speed that exceeds the allowed speed limit, then a stabilizing policy would
stabilize the car back within the speed limit.

Our work builds on the recent method of (Lechner et al., 2021) for verifying that a pre-learned con-
trol policy ensures probability 1 stability of the system. Stability is verified by learning a ranking
supermartingale (RSM), which can be viewed as a stochastic extension of Lyapunov functions for
deterministic systems (Khalil, 2002). The method of (Lechner et al., 2021) makes very mild as-
sumptions on the system which make it applicable to a wide range of systems and control policies.
However, the key drawback of the method is that it can only be used to verify probability 1 stability
under a given policy. If the pre-learned policy does not ensure stability, the method in its current
form provides no means to learn a new policy in a way that would provide stability guarantees.
(Lechner et al., 2021) briefly discuss the possibility of extending the method to safe learning by
jointly learning the policy and the RSM, however this idea is not empirically evaluated.

The goal of this work is to empirically evaluate this extension in order to understand the difficulties
of learning stabilizing policies as opposed to the stability verification of pre-learned policies. In par-
ticular, our results show that a good initialization of the policy is essential, as otherwise the learning
algorithm easily gets stuck in a local minimum at which the learned policy cannot be verified to
be ensure stability. We propose a simple-form reward function that intuitively captures the stability
task and use proximal policy optimization (PPO) (Schulman et al., 2017) with respect to the reward
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function to initialize the policy. Our experimental results show that such an initialization leads to
significant improvement in performance over a naive initialization of the policy.

Related work Learning methods present a promising approach to solving complex non-linear con-
trol tasks due to their generality. Several recent works propose learning stabilizing policies for
deterministic control problems together with a Lyapunov function that certifies stability (Richards
et al., 2018; Chang et al., 2019; Abate et al., 2021). In particular, (Chang et al., 2019; Abate et al.,
2021) propose a learner-verifier framework similar to that of (Lechner et al., 2021) and the one pre-
sented in our work. There is a rich body of literature on theoretical stability analysis in stochastic
dynamical systems and control problems, see (Kushner, 2014) for a survey, however very few works
consider automated control with stability guarantees. Control with finite-time horizon reachability
constraints has been considered in (Crespo & Sun, 2003; Soudjani et al., 2015; Lavaei et al., 2020;
Cauchi & Abate, 2019; Vinod et al., 2019). With the exception of (Lechner et al., 2021) that was
discussed above and that our work builds on, the work of (Vaidya, 2015) is to our best knowledge the
only work that considers control with infinite-time horizon stability constraints and that provides for-
mal guarantees, however the stability certificates are computed in a form that makes them piecewise
constant and the work verifies a weaker notion of stability called “coarse stochastic stability”.

2 RANKING SUPERMARTINGALES FOR STABILITY VERIFICATION

We consider a discrete-time stochastic dynamical system defined by the equation
xt+1 = f(xt, π(xt), ωt),

where f : X × U × N → X is a dynamics function, π : X → U is a policy and ωt is a stochastic
disturbance vector sampled according to a probability distribution d over N . Here, X ⊆ Rn is the
state space of the system, U ⊆ Rm is the action space and N ⊆ Rp is the stochastic disturbance
space, all of which are required to be Borel-measurable. We assume that X ⊆ Rn is compact and
that f and π are Lipschitz continuous, which are common assumptions in control theory.

Almost-sure asymptotic stability There are several notions of stability in stochastic systems, and
we consider almost-sure asymptotic stability (Kushner, 1965). Let Xs ⊆ X is a non-empty Borel-
measurable subset that is closed under system dynamics so that the system cannot leave it once
reached, i.e., for every x ∈ Xs we have that f(x, π(x), ω) ∈ Xs for any ω ∈ N . We say that Xs is
almost-surely (a.s.) asymptotically stable, if for each initial state x0 ∈ X we have that

Px0

[
lim
t→∞

(
inf

y∈Xs

||xt − y||1
)
= 0
]
= 1.

Here, Px0 is the probability measure over the set of all system trajectories that start in the initial
state x0 defined by the MDP semantics of the system (Puterman, 1994). Our definition slightly
differs from that of (Kushner, 1965) which considers the special case Xs = {0}. The reason is
that, analogously to (Lechner et al., 2021) and to the existing works on learning stabilizing policies
in deterministic systems (Berkenkamp et al., 2017; Richards et al., 2018; Chang et al., 2019), we
need to assume the existence of an open neighbourhood of the origin that is known to be stable for
learning to be stable, which we ensure by assuming that Xs is closed under system dynamics.

Ranking supermartingales Intuitively, a ranking supermartingale for the set Xs is a nonnegative
continuous function V : X → R which strictly decreases in expected value upon every one-step
execution of the system, until the set Xs is reached. The name comes from its connection to super-
martingale processes in probability theory (Williams, 1991).

Definition 1 A ranking supermartingale (RSM) for Xs is a nonnegative continuous function V :
X → R for which there exists ε > 0 such that, for every x ∈ X\Xs, we have that

Eω∼d[V (x, π(x), ω)] ≤ V (x)− ε.

The following theorem is the key result on the use of RSMs for a.s. asymptotic stability analysis.

Theorem 1 (Lechner et al. (2021)) Let f : X × U ×N → X be a Lipschitz continuous dynamics
function, π : X → U a Lipschitz continuous policy and d a distribution over N . Suppose that X is
compact and let Xs ⊆ X be closed under system dynamics and have a non-empty interior. Suppose
that there exists an RSM V : X → R for Xs. Then Xs is a.s. asymptotically stable.
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3 ALGORITHM FOR LEARNING RANKING SUPERMARTINGALES

We now present the details behind our learner-verifier framework for simultaneously learning a
stabilizing policy πµ and an RSM Vθ forXs, both of which are parametrized as neural networks with
parameters µ and θ. The verifier module is analogous to that of (Lechner et al., 2021) for verifying
a learned RSM candidate under the fixed policy, so we only provide a high level presentation of it.
The novelty of our algorithm lies in modifying the learner in a way which allows learning πµ and
Vθ simultaneously as briefly discussed in (Lechner et al., 2021), and in observing the importance of
algorithm initialization. The algorithm pseudocode is provided in Appendix A.1.

Initialization Our algorithm first initializes the policy πµ by using proximal policy optimization
(PPO) (Schulman et al., 2017). In particular, the algorithm first induces an MDP from the system
and defines a reward function r : X → [0, 1] via r(x) := I[Xs](x). The first learner-verifier iteration
is then started by a call to the verifier, followed by a call to the learner. This contrasts the verification
algorithm of (Lechner et al., 2021), which starts with the call to the learner. Our experimental results
will show a naive initialization often does not allow learning a stabilizing policy. The importance of
initialization was also observed in (Chang et al., 2019) which showed that a proper initialization of
the policy is necessary for a similar method for stability verification of deterministic neural network-
controlled systems. Specifically, (Chang et al., 2019) initialized their linear policy with the LQR
solution of the system linearized at the origin. However, it is not clear how one could linearize
stochastic dynamics with non-additive kinds of stochastic disturbance or systems that are highly
non-linear, whereas our initialization is applicable to general classes of stochastic disturbances and
system dynamics.

Verifier Due to the continuity of Vθ and the compactness of X , Vθ is bounded from below and
therefore may be increased by a constant value in order to make it nonnegative. Hence, the verifier
only needs to check whether the RSM candidate satisfies the expected decrease condition. To do
this, the algorithm computes a discretization the part of the state space X\Xs. A discretization of
X\Xs with mesh τ > 0 is a set X̃ ⊆ X such that, for every x ∈ X\Xs, there exists x̃ ∈ X̃ such that
||x − x̃||1 < τ . As f is assumed to be Lipschitz continuous and as πµ and Vθ are neural networks
with continuous activation functions thus also Lipschitz continuous (Szegedy et al., 2014), we can
show that the expected decrease condition may be checked by checking a slightly stricter condition
at the discretization points. In particular, let LV , Lf and Lπ being Lipschitz constants of Vθ, f and
πµ. We assume that Lf is provided, and use the method of (Szegedy et al., 2014) to compute LV
and Lπ . Let K = LV · (Lf · (Lπ + 1) + 1). Then, if we show that for every x̃ ∈ X̃ we have

Eω∼d
[
Vθ

(
f(x̃, πµ(x̃), ω)

)]
< Vθ(x̃)− τ ·K, (1)

then there exists ε > 0 for which Vθ satisfied the expected decrease condition (Lechner et al., 2021,
Theorem 3). Hence, the verifier may check that Vθ is an RSM by simply checking whether the
condition in eq. (1) is satisfied at each x̃ ∈ X̃ . The expected value on the left hand side of the above
inequality is computed by using interval arithmetic abstract interpretation, see (Lechner et al., 2021)
for details. If the verifier concludes that eq. (1) is satisfied at each x̃ ∈ X̃ , the algorithm concludes
a.s. asymptotic stability of Xs. Otherwise, for each state x̃ ∈ X̃ at which the condition is violated,
the verifier samples N successor states of x̃ where N is an algorithm parameter, and adds them to a
setDx̃ that will be used by the learner to approximate the expected value Eω∼d[Vθ(f(x̃, πµ(x̃), ω))].

Learner A policy πµ and an RSM candidate Vθ are learned by minimizing the loss function

L(µ, θ) = LRSM(µ, θ) + λ · LLipschitz(µ, θ). (2)

The first loss term LRSM(µ, θ) is defined via

LRSM(µ, θ) =
1

|X̃ |

∑
x̃∈X̃

(
max

{ ∑
x′∈Dx̃

Vθ(x
′)

|Dx̃|
− Vθ(x̃) + τ ·K, 0

})
.

Intuitively, each term in the sum is used to guide the learner towards learning an RSM candidate
that satisfies the expected dicrease condition at the state x̃ ∈ X . Since we cannot compute the
closed form expression for the expected value of Vθ over the successor states of x̃, we use sampled
successor states that were computed by the verifier at counterexample states. Such an on-demand
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Table 1: Number of certified stable instances with different number of PPO pre-training iterations.

Number of PPO iterations µ fixed µ learnable

0 0/0 0/0
20 0/10 1/10
30 6/10 7/10
40 9/10 10/10
50 10/10 10/10
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Figure 1: System trajectories before and after RSM learning with Algorithm 1. The orange markers
indicate the trajectories’ terminal states after 200 steps. The policy is pre-trained with 20 (1a) and
30 (1b) PPO iterations. The RSM learning process in 1a is stuck in a local minimum where the RSM
decrease condition is satisfied in all except one state (left bottom). The RSM learning process in 1b
terminated successfully, proving that policy stabilizes the system to a set around the origin.

sampling of successor states improves the scalability of our algorithm. The second loss term λ ·
LLipschitz(µ, θ) in the sum is a regularization term used to guide the learner towards learning πµ and
Vθ with small Lipschitz constant, so as to make the term τ ·K in the condition checked by the verifier
as small as possible. We defer the details on the regularization term to Appendix A.2.

4 EXPERIMENTAL EVALUATION

This section investigates the importance of policy initialization.

First, we consider the performance of both the algorithm of (Lechner et al., 2021) which keeps
the policy’s parameters µ frozen and its extension to an algorithm that learns a stabilizing policy
by making µ trainable. We repeat this experiment for a different number of policy pre-training
iterations with PPO and random seeds (n=10). We then report the algorithm’s success, i.e., whether
a valid RSM is found. We use 2D system benchmark environment of Lechner et al. (2021) for our
experimental study. Details on the experiment setup can be found in Appendix A.3 and A.4.

The results in Table 1 show that, without a proper initialization, the algorithm cannot learn a safe
policy and a valid RSM regardless of whether the policy’s parameters µ are fixed or trainable. After
a short pre-training of 20 PPO iterations, the algorithm could only learn a stable policy in 1 out of 10
trials. Conversely, if the initially provided policy is well-trained, the algorithm can prove its stability
even if the policies’ parameters are frozen for all ten tested runs. Aggregated over all 40 runs, only
in 3 cases (7.5%) the joint training of the policy and the RSM helped over just training an RSM with
a fixed pre-trained policy.

In Figure 1, we analyze the difficulties of the joint optimization problem. Figure 1a shows that
the training algorithm gets stuck in a local minimum without a good initialization. The expected
decrease condition is fulfilled everywhere on the state space except in a single point (bottom left).
Consequently, the system in Figure 1a experiences a low training loss but our algorithm learns an
invalid RSM. Escaping this sub-optimal minimum requires the RSM and the policy to change their
behavior on the entire state space, making it improbable using stochastic gradient descent. Figure
1b visualizes an example when the pre-trained policy is unsafe but good enough for our algorithm
to repair it to a certifiable safe policy.
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Network Hidden size Learning rate Lipschitz threshold Output activation

Policy πµ 128, 128 5 · 10−5 3.0 -
RSM Vθ 128, 128 5 · 10−4 8.0 Softplus

Value function (for PPO) 128, 128 5 · 10−4 - -

Table 2: Hyperparameters of the networks used in our experiments. All networks use a ReLU
activation function in their hidden layers. The regularization factor λ was set to 10−3.

A APPENDIX

A.1 ALGORITHM PSEUDOCODE

Algorithm 1 Learning a stabilizing policy

1: Input Dynamics function f , disturbance distribution d, region Xs ⊆ X
2: Lipschitz constant Lf , parameters τ > 0, N ∈ N, λ > 0
3: πµ ← policy initialized via PPO
4: X̃ ← discretization of X\Xs with mesh τ
5: for x in X̃ do
6: Dx ← N sampled successor states of x
7: end for
8: Vθ ← trained RSM candidate by minimizing the loss in eq. (2) with parameters µ fixed
9: while timeout not reached do

10: Lπ , LV ← Lipschitz constants of πµ, Vθ
11: K ← LV · (Lf · (Lπ + 1) + 1)

12: if ∃x ∈ X̃ s.t. Eω∼d[V (f(x, π(x), ω))] ≥ V (x)− τ ·K then
13: Dx ← add N sampled successor states of x
14: πµ, Vθ ← trained policy and RSM candidate by minimizing the loss in eq. (2)
15: else
16: Return A.s. asymptotically stable
17: end if
18: end while
19: Return Unknown

A.2 LIPSCHITZ LOSS TERM

The loss term λ·LLipschitz(µ, θ) is the regularization term used to guide the learner towards learning a
policy πµ and an RSM candidate Vθ such that the Lipschitz constant Lθ does not exceed a tolerable
threshold δ > 0. This is done in order to make the term τ ·K in the condition verified by the verifier
sufficiently small. The constant λ > 0 is an algorithm parameter balancing the two loss terms, and
we define

LLipschitz(µ, θ) = max
{
LV −

δ

τ · (Lf · (Lπ + 1) + 1)
, 0
}
,

where the Lipschitz constants Lπ and Lθ are computed as in (Szegedy et al., 2014).

A.3 TRAINING DETAILS

The networks size and training hyperparameters for all network involved in our experiments are
listed in Table 2.

A.4 PPO DETAILS

Here, we list the settings used for the PPO pre-training process of the policy networks Schulman
et al. (2017). In every PPO iteration we collect 30 episodes of the environment as training data in
the experience buffer. The policy πµ is made stochastic using a Gaussian distributed random variable

7



Workshop on Socially Responsible Machine Learning (SRML), co-located with ICLR 2022

that is added to the policy’s output, i.e., the policy predicts the mean of the Gaussian. The standard
deviation of the Gaussian is annealed during the policy training process, starting from 0.5 at first PPO
iteration to 0.05 at PPO iteration 50. We normalize the advantage values, i.e., the difference between
the observed discounted returns and the predicted return by the value function, by subtracting the
mean and dividing by the standard deviation of the advantage values of the experience buffer. The
PPO clipping value ε is set to 0.2 and the discount factor γ to 0.99. In every PPO iteration, the policy
is trained for 10 epochs, except for the first iteration where the network is trained for 30 epochs. An
epoch corresponds to a pass over the entire data in the experience buffer, i.e., the data from the the
30 episodes. The value network is trained for 5 epochs, expect in the first PPO iteration, where the
training is performed for 10 epochs. We apply the Lipschitz regularization on the policy parameters
already during the PPO pre-training of the policy.
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